Publications by authors named "Sanchez-Diaz L"

Neratinib is a tyrosine kinase inhibitor that is used for the therapy of patients with HER2+ breast tumors. However, despite its clinical benefit, resistance to the drug may arise. Here we have created cellular models of neratinib resistance to investigate the mechanisms underlying such resistance.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that affect different anatomical locations. Despite this heterogeneity, HNSCC treatment depends on the anatomical location, TNM stage and resectability of the tumor. Classical chemotherapy is based on platinum-derived drugs (cisplatin, carboplatin and oxaliplatin), taxanes (docetaxel, paclitaxel) and 5-fluorouracil.

View Article and Find Full Text PDF

Hiking is a sports activity that takes place in the natural environment. From the point of view of well-being, it is an aerobic activity that prevents and improves cardiovascular diseases. According to data provided by the United Nations, within the framework of the International Year of Mountains, mountain tourism represents around 15% to 20% of total world tourism revenue.

View Article and Find Full Text PDF

The effect of polyvalent cations, like spermine, on the condensation of DNA into very well-defined toroidal shapes has been well studied and understood. A great effort has been made to obtain similar condensed structures from RNA molecules, but so far, it has been elusive. In this work, we show that single-stranded RNA (ssRNA) molecules can easily be condensed into nanoring and globular structures on a mica surface, where each nanoring structure is formed mostly by a single RNA molecule.

View Article and Find Full Text PDF

Cellular senescence is a stress-response mechanism that contributes to homeostasis maintenance, playing a beneficial role during embryogenesis and in normal adult organisms. In contrast, chronic senescence activation may be responsible for other events such as age-related disorders, HIV and cancer development. Cellular senescence activation can be triggered by different insults.

View Article and Find Full Text PDF

The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as well as metastasis deriving from it, are originated from a single subpopulation of cells with self-renewal and differentiation capacities. These cancer stem cells are supposed to be critical for tumor expansion and metastasis, tumor relapse and resistance to conventional therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH, PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways; promote the overexpression of drug transporter proteins; and activate specific stem cell transcription factors.

View Article and Find Full Text PDF
Article Synopsis
  • Using small-angle neutron scattering, we studied the conformation of poly(3-alkylthiophene) in deuterated dichlorobenzene, focusing on how side chain arrangements affect the backbone.
  • We found that introducing branch points in the side chain can enhance chain flexibility due to steric interactions that encourage torsional movement between backbone units.
  • Our results emphasize the importance of topological isomerism in influencing chain rigidity and provide insights into improving the electronic properties of conducting polymers through side chain modifications.
View Article and Find Full Text PDF

The flow of colloidal suspensions is ubiquitous in nature and industry. Colloidal suspensions exhibit a wide range of rheological behavior, which should be closely related to the microscopic structure of the systems. With in situ small-angle neutron scattering complemented by rheological measurements, we investigated the deformation behavior of a charge-stabilized colloidal glass at particle level undergoing steady shear.

View Article and Find Full Text PDF

Understanding glasses and the glass transition requires comprehending the nature of the crossover from the ergodic (or equilibrium) regime, in which the stationary properties of the system have no history dependence, to the mysterious glass transition region, where the measured properties are nonstationary and depend on the protocol of preparation. In this work we use nonequilibrium molecular dynamics simulations to test the main features of the crossover predicted by the molecular version of the recently developed multicomponent nonequilibrium self-consistent generalized Langevin equation theory. According to this theory, the glass transition involves the abrupt passage from the ordinary pattern of full equilibration to the aging scenario characteristic of glass-forming liquids.

View Article and Find Full Text PDF

The recent predictions of the self-consistent generalized Langevin equation theory, describing the existence of unusual partially arrested states in the context of ionic liquids, were probed using all-atom molecular dynamics simulations of a room-temperature ionic liquid. We have found a slower diffusion of the smaller anions compared with the large cations for a wide range of temperatures. The arrest mechanism consists on the formation of a strongly repulsive glass by the anions, stabilized by the long range electrostatic potential.

View Article and Find Full Text PDF

This work presents scattering functions of conjugates consisting of a colloid particle and a self-avoiding polymer chain as a model for protein-polymer conjugates and nanoparticle-polymer conjugates in solution. The model is directly derived from the two-point correlation function with the inclusion of excluded volume effects. The dependence of the calculated scattering function on the geometric shape of the colloid and polymer stiffness is investigated.

View Article and Find Full Text PDF

Soft colloids are hybrids between linear polymers and hard colloids. Their solutions exhibit rich phase phenomenon due to their unique microstructure. In scaling theories, a geometrically defined overlap concentration * is used to identify the concentration regimes of their solutions characterized with distinct conformational properties.

View Article and Find Full Text PDF

The non-equilibrium self-consistent generalized Langevin equation theory of irreversible processes in glass-forming liquids [P. Ramírez-González and M. Medina-Noyola, Phys.

View Article and Find Full Text PDF

Using Monte Carlo simulations, we investigate the structural characteristics of an interacting hard-sphere system with shifted charge to elucidate the effect of the noncentrosymmetric interaction on its phase behavior. Two different phase transitions are identified for this model system. With increasing volume fraction, an abrupt liquid-to-crystal transition first occurs at a significantly lower volume fraction than in centrosymmetrically charged systems.

View Article and Find Full Text PDF

We have used neutron scattering to investigate the influence of concentration on the conformation of a star polymer. By varying the contrast between the solvent and the isotopically labeled stars, we obtain the distributions of polymer and solvent within a star polymer from analysis of scattering data. A correlation between the local desolvation and the inward folding of star branches is discovered.

View Article and Find Full Text PDF

The recently developed nonequilibrium extension of the self-consistent generalized Langevin equation theory of irreversible relaxation [Ramírez-González and Medina-Noyola, Phys. Rev. E 82, 061503 (2010); Ramírez-González and Medina-Noyola, Phys.

View Article and Find Full Text PDF

We report a systematic molecular dynamics study of the isochoric equilibration of hard-sphere fluids in their metastable regime close to the glass transition. The thermalization process starts with the system prepared in a nonequilibrium state with the desired final volume fraction ϕ for which we can obtain a well-defined nonequilibrium static structure factor S(0)(k;ϕ). The evolution of the α-relaxation time τ(α)(k) and long-time self-diffusion coefficient D(L) as a function of the evolution time t(w) is then monitored for an array of volume fractions.

View Article and Find Full Text PDF

The generalized mean spherical approximation of the structural properties of the binary charge-symmetric fluid of screened charged hard-spheres of the same diameter, i.e., the screened restricted primitive model, is extended to include binary charge-asymmetric and multi-component fluids.

View Article and Find Full Text PDF

Based on the recently proposed self-consistent generalized Langevin equation theory of dynamic arrest, in this letter we show that the ergodic-nonergodic phase diagram of a classical mixture of charged hard spheres (the so-called "primitive model" of ionic solutions and molten salts) includes arrested phases corresponding to nonconducting ionic glasses, partially arrested states that represent solid electrolytes (or "superionic" conductors), low-density colloidal Wigner glasses, and low-density electrostatic gels associated with arrested spinodal decomposition.

View Article and Find Full Text PDF