The complement system is a first line of defence against infectious, tumoral or autoimmune processes, and it is constitutively regulated to avoid excessive or unspecific activation. Factor H (FH), a most relevant complement regulator, controls complement activation in plasma and on the cellular surfaces of autologous tissues. FH shares evolutionary origin and structural features with a group of plasma proteins known as FH-Related Proteins (FHRs), which could act as FH functional antagonists.
View Article and Find Full Text PDFBackground: C3 glomerulopathy (C3G) is a heterogeneous group of chronic renal diseases characterized predominantly by glomerular C3 deposition and complement dysregulation. Mutations in factor H-related (FHR) proteins resulting in duplicated dimerization domains are prototypical of C3G, although the underlying pathogenic mechanism is unclear.
Methods: Using and assays, we performed extensive characterization of an FHR-1 mutant with a duplicated dimerization domain.
Pathogenic gain-of-function variants in complement Factor B were identified as causative of atypical Hemolytic Uremic syndrome (aHUS) in 2007. These mutations generate a reduction on the plasma levels of complement C3. A four-month-old boy was diagnosed with hypocomplementemic aHUS in May 2000, and he suffered seven recurrences during the following three years.
View Article and Find Full Text PDFThe complement system is a first line of defence against infectious, tumoral or autoimmune processes, and it is constitutively regulated to avoid excessive or unspecific activation. Factor H (FH), a most relevant complement regulator, controls complement activation in plasma and on the cellular surfaces of autologous tissues. FH shares evolutionary origin and structural features with a group of plasma proteins known as FH-Related Proteins (FHRs), which could act as FH functional antagonists.
View Article and Find Full Text PDFHaemolytic Uraemic Syndrome associated with infections (SP-HUS) is a clinically well-known entity that generally affects infants, and could have a worse prognosis than HUS associated to infections. It has been assumed that complement genetic variants associated with primary atypical HUS cases (aHUS) do not contribute to SP-HUS, which is solely attributed to the action of the pneumococcal neuraminidase on the host cellular surfaces. We previously identified complement pathogenic variants and risk polymorphisms in a few Hungarian SP-HUS patients, and have now extended these studies to a cohort of 13 Spanish SP-HUS patients.
View Article and Find Full Text PDFIn pig-to-primate xenotransplantation, flow cytometry assays allow the examination of antibody reactivity to intact antigens in their natural conformation and location on cell membranes. Here we describe in detail the procedures of two flow cytometry assays to measure the antibody-mediated complement-dependent cytotoxicity (CDC) response or serum levels of IgG and IgM xenoantibodies. This information is key for understanding the rejection process of vascularized xenografts and finding strategies to overcome it.
View Article and Find Full Text PDFNephritic factors comprise a heterogeneous group of autoantibodies against neoepitopes generated in the C3 and C5 convertases of the complement system, causing its dysregulation. Classification of these autoantibodies can be clustered according to their stabilization of different convertases either from the classical or alternative pathway. The first nephritic factor described with the capacity to stabilize C3 convertase of the alternative pathway was C3 nephritic factor (C3NeF).
View Article and Find Full Text PDFMutations in the gene encoding for complement regulator factor H (FH) severely disrupt its normal function to protect human cells from unwanted complement activation, resulting in diseases such as atypical hemolytic uremic syndrome (aHUS). aHUS presents with severe hemolytic anemia, thrombocytopenia, and renal disease, leading to end-stage renal failure. Treatment of severe complement-mediated disease, such as aHUS, by inhibiting the terminal complement pathway, has proven to be successful but at the same time fails to preserve the protective role of complement against pathogens.
View Article and Find Full Text PDFThe alternative pathway is a continuously active surveillance arm of the complement system, and it can also enhance complement activation initiated by the classical and the lectin pathways. Various membrane-bound and plasma regulatory proteins control the activation of the potentially deleterious complement system. Among the regulators, the plasma glycoprotein factor H (FH) is the main inhibitor of the alternative pathway and its powerful amplification loop.
View Article and Find Full Text PDFDysregulation of the complement alternative pathway (AP) is a major pathogenic mechanism in atypical hemolytic-uremic syndrome (aHUS). Genetic or acquired defects in factor H (FH), the main AP regulator, are major aHUS drivers that associate with a poor prognosis. FH activity has been suggested to be downregulated by homologous FH-related (FHR) proteins, including FHR-3 and FHR-1.
View Article and Find Full Text PDFThe complement system is a complex and autoregulated multistep cascade at the interface of innate and adaptive immunity. It is activated by immune complexes or apoptotic cells (classical pathway), pathogen-associated glycoproteins (lectin pathway) or a variety of molecular and cellular surfaces (alternative pathway). Upon activation, complement triggers the generation of proteolytic fragments that allow the elimination of the activating surface by enhancing inflammation, opsonization, phagocytosis, and cellular lysis.
View Article and Find Full Text PDFFactor H (FH) autoantibodies are present in 6-10% of atypical hemolytic uremic syndrome (aHUS) patients, most of whom have homozygous deficiency of the FH-related protein FHR-1. Although the pathogenic role of the autoantibodies is established, little is known about their molecular characteristics and changes over time. Here, we describe the specificity and other immunological features of anti-FH autoantibodies in the Spanish and Hungarian aHUS cohorts.
View Article and Find Full Text PDFAtypical hemolytic uremic syndrome (aHUS) is a severe thrombotic microangiopathy affecting the renal microvasculature and is associated with complement dysregulation caused by mutations or autoantibodies. Disease penetrance and severity is modulated by inheritance of "risk" polymorphisms in the complement genes MCP, CFH and CFHR1. We describe the prevalence of mutations, the frequency of risk polymorphisms and the occurrence of anti-FH autoantibodies in a Spanish aHUS cohort (n=367).
View Article and Find Full Text PDFAtypical hemolytic uremic syndrome (aHUS) associates with complement dysregulation caused by mutations and polymorphisms in complement activators and regulators. However, the reasons why some mutations in complement proteins predispose to aHUS are poorly understood. Here, we have investigated the functional consequences of three aHUS-associated mutations in C3, R592W, R161W and I1157T.
View Article and Find Full Text PDFTremendous advances in our understanding of the thrombotic microangiopathies (TMAs) have revealed distinct disease mechanisms within this heterogeneous group of diseases. As a direct result of this knowledge, both children and adults with complement-mediated TMA now enjoy higher expectations for long-term health. In this update on atypical hemolytic uremic syndrome, we review the clinical characteristics; the genetic and acquired drivers of disease; the broad spectrum of environmental triggers; and current diagnosis and treatment options.
View Article and Find Full Text PDFBackground And Objectives: Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement.
View Article and Find Full Text PDFThe alternative pathway of complement is implicated in the pathogenesis of several renal diseases, such as atypical hemolytic uremic syndrome, dense deposit disease and other forms of C3 glomerulopathy. The underlying complement defects include genetic and/or acquired factors, the latter in the form of autoantibodies. Because the autoimmune forms require a specific treatment, in part different from that of the genetic forms, it is important to detect the autoantibodies as soon as possible and understand their characteristics.
View Article and Find Full Text PDFComplement factor H (FH) serum levels can be affected by the presence of immune complexes of FH with autoantibodies like in autoimmune forms of atypical haemolytic uraemic syndrome (aHUS) or with C3b in homozygous factor I (FI) deficiency. These complexes reduce the amount of free functional circulating FH. In this study we aimed to determine whether FH levels measurement is disturbed in some pathological conditions and to establish a method for quantifying free and total FH in serum.
View Article and Find Full Text PDFBackground: Atypical hemolytic uremic syndrome (aHUS) is a form of thrombotic microangiopathy (TMA) caused by dysregulation of the complement system. Outcomes of kidney transplantation are poor owing to aHUS recurrence and loss of graft. Patients carrying CFH mutations or CFH/CFHR1 hybrid genes present a very high risk of recurrence despite preventive plasmapheresis.
View Article and Find Full Text PDFComplement is an essential humoral component of innate immunity; however, its inappropriate activation leads to pathology. Polymorphisms, mutations, and autoantibodies affecting factor H (FH), a major regulator of the alternative complement pathway, are associated with various diseases, including age-related macular degeneration, atypical hemolytic uremic syndrome, and C3 glomerulopathies. Restoring FH function could be a treatment option for such pathologies.
View Article and Find Full Text PDFC3 glomerulopathies (C3G) are a group of severe renal diseases with distinct patterns of glomerular inflammation and C3 deposition caused by complement dysregulation. Here we report the identification of a familial C3G-associated genomic mutation in the gene complement factor H–related 1 (CFHR1), which encodes FHR1. The mutation resulted in the duplication of the N-terminal short consensus repeats (SCRs) that are conserved in FHR2 and FHR5.
View Article and Find Full Text PDFSeveral abnormalities in complement genes reportedly contribute to atypical hemolytic uremic syndrome (aHUS), but incomplete penetrance suggests that additional factors are necessary for the disease to manifest. Here, we sought to describe genotype-phenotype correlations among patients with combined mutations, defined as mutations in more than one complement gene. We screened 795 patients with aHUS and identified single mutations in 41% and combined mutations in 3%.
View Article and Find Full Text PDFAtypical hemolytic uremic syndrome (aHUS) is a renal disease associated with complement alternative pathway dysregulation and is characterized by endothelial injury. Pentraxin 3 (PTX3) is a soluble pattern recognition molecule expressed by endothelial cells and upregulated under inflammatory conditions. PTX3 activates complement, but it also binds the complement inhibitor factor H.
View Article and Find Full Text PDF