Background And Aims: Hyperglycaemia during gestational diabetes (GD) predisposes women and their offspring to later cardiometabolic disease. The hyperglycaemia-mediated epigenetic changes remain to be elucidated. Methyltransferase MLL1-induced trimethylation of histone 3 at lysine 4 (H3K4me3) activates inflammatory and oxidative phenotype.
View Article and Find Full Text PDFBackground: Histone modifications play a critical role in chromatin remodelling and regulate gene expression in health and disease. Histone methyltransferases EZH1, EZH2, and demethylases UTX, JMJD3, and UTY catalyse trimethylation of lysine 27 on histone H3 (H3K27me3). This study was designed to investigate whether H3K27me3 triggers hyperglycemia-induced oxidative and inflammatory transcriptional programs in the endothelium.
View Article and Find Full Text PDFThe adipose tissue stores excess energy in the form of neutral lipids within adipocyte lipid droplets (LDs). The correct function of LDs requires the interaction with other organelles, such as the endoplasmic reticulum (ER) as well as with LD coat-associated proteins, including Rab18, a mediator of intracellular lipid trafficking and ER-LD interaction. Although perturbations of the inter-organelle contact sites have been linked to several diseases, such as cancer, no information regarding ER-LD contact sites in dysfunctional adipocytes from the obese adipose tissue has been published to date.
View Article and Find Full Text PDFBackground: Obesity is characterized by adipose tissue dysregulation and predisposes individuals to insulin resistance and type 2 diabetes. At the molecular level, adipocyte dysfunction has been linked to obesity-triggered oxidative stress and protein carbonylation, considering protein carbonylation as a link between oxidative stress and metabolic dysfunction. The identification of specific carbonylated proteins in adipose tissue could provide novel biomarkers of oxidative damage related to metabolic status (i.
View Article and Find Full Text PDFPreadipocytes are crucial for healthy adipose tissue expansion. Preadipocyte differentiation is altered in obese individuals, which has been proposed to contribute to obesity-associated metabolic disturbances. Here, we aimed at identifying the pathogenic processes underlying impaired adipocyte differentiation in obese individuals with insulin resistance (IR)/type 2 diabetes (T2D).
View Article and Find Full Text PDFDiscovery of the adipose tissue as a major source of signaling molecules almost three decades ago set a novel physiological paradigm that paved the way for the identification of metabolic organs as endocrine organs. Adipocytes, the main adipose tissue cell type, do not only represent the principal site of energy storage in form of triglycerides, but also produce a variety of molecules for short and long distance intercellular communication, named adipokines, which coordinate systemic responses. Although the best known adipokines identified and characterized hitherto are leptin and adiponectin, novel adipokines are continuously being described, what have significantly helped to elucidate the role of adipocyte biology in obesity and associated comorbidities.
View Article and Find Full Text PDFCirculating microRNAs (miRNAs) have been proposed as biomarkers for type 2 diabetes (T2D). Adipose tissue (AT), for which dysfunction is widely associated with T2D development, has been reported as a major source of circulating miRNAs. However, the role of dysfunctional AT in the altered pattern of circulating miRNAs associated with T2D onset remains unexplored.
View Article and Find Full Text PDFThe main limitations of lipidomics analysis are the chemical complexity of the lipids, the range of concentrations at which they exist, and the variety of samples usually analyzed. These limitations particularly affect the characterization of polar lipids owing to the interference of neutral lipids, essentially acylglycerides, which are at high concentration and suppress ionization of low concentrated lipids in mass spectrometry detection. The influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue by LC-MS/MS was the aim of this research.
View Article and Find Full Text PDFp53 family members control several metabolic and cellular functions. The p53 ortholog p63 modulates cellular adaptations to stress and has a major role in cell maintenance and proliferation. Here we show that p63 regulates hepatic lipid metabolism.
View Article and Find Full Text PDF