Publications by authors named "Sanchez-Aparicio M"

The result of the multidisciplinary collaboration of researchers from different areas of knowledge to validate a solar radiation model is presented. The MAPsol is a 3D local-scale adaptive solar radiation model that allows us to estimate direct, diffuse, and reflected irradiance for clear sky conditions. The model includes the adaptation of the mesh to complex orography and albedo, and considers the shadows cast by the terrain and buildings.

View Article and Find Full Text PDF

Infectious Bursal Disease Virus (IBDV) is the causative agent of an immunosuppressive disease that affects domestic chickens () severely affecting poultry industry worldwide. IBDV infection is characterized by a rapid depletion of the bursal B cell population by apoptosis and the atrophy of this chief lymphoid organ. Previous results from our laboratory have shown that exposure of infected cells to type I IFN leads to an exacerbated apoptosis, indicating an important role of IFN in IBDV pathogenesis.

View Article and Find Full Text PDF

We have previously described polyglutamine-binding protein 1 (PQBP1) as an adapter required for the cyclic GMP-AMP synthase (cGAS)-mediated innate response to the human immunodeficiency virus 1 (HIV-1) and other lentiviruses. Cytoplasmic HIV-1 DNA is a transient and low-abundance pathogen-associated molecular pattern (PAMP), and the mechanism for its detection and verification is not fully understood. Here, we show a two-factor authentication strategy by the innate surveillance machinery to selectively respond to the low concentration of HIV-1 DNA, while distinguishing these species from extranuclear DNA molecules.

View Article and Find Full Text PDF

In this issue of Cell Host & Microbe, Talbot-Cooper et al. highlight how viruses develop strategies that can target universal activators of the innate immune response. The authors unravel a common mechanism between poxviruses and paramyxoviruses to limit the expression of antiviral genes and promote virulence.

View Article and Find Full Text PDF
Article Synopsis
  • The fate of influenza A virus (IAV) in host cells is determined by the interplay between the cell's defense systems and the virus's strategies to evade those defenses.
  • A comprehensive analysis combining genetic screens, transcriptomics, and proteomics identified key cell mechanisms, particularly the role of autophagy regulator TBC1D5, in inhibiting IAV replication.
  • The IAV M2 protein impedes TBC1D5's function by disrupting its interaction with Rab7, allowing the virus to avoid degradation and continue its replication and spread.
View Article and Find Full Text PDF
Article Synopsis
  • The Ebola virus VP24 protein inhibits the antiviral response by blocking the import of STAT1 into the nucleus and interacts with nuclear membrane proteins, including emerin and lamins A/C and B.
  • VP24 disrupts the interaction between emerin and lamin A/C, which leads to abnormal nuclear shapes, DNA damage responses, and activates specific kinases and genes.
  • The findings suggest that VP24's impact on the nuclear membrane mirrors features seen in laminopathy diseases and contributes to nuclear envelope damage during EBOV infection.
View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs).

View Article and Find Full Text PDF

Suppressing cellular signal transducers of transcription 2 (STAT2) is a common strategy that viruses use to establish infections, yet the detailed mechanism remains elusive, owing to a lack of structural information about the viral-cellular complex involved. Here, we report the cryo-EM and crystal structures of human STAT2 (hSTAT2) in complex with the non-structural protein 5 (NS5) of Zika virus (ZIKV) and dengue virus (DENV), revealing two-pronged interactions between NS5 and hSTAT2. First, the NS5 methyltransferase and RNA-dependent RNA polymerase (RdRP) domains form a conserved interdomain cleft harboring the coiled-coil domain of hSTAT2, thus preventing association of hSTAT2 with interferon regulatory factor 9.

View Article and Find Full Text PDF

The Toll/IL-1R-domain-containing adaptor protein SARM1 is expressed primarily in the brain, where it mediates axonal degeneration. Roles for SARM1 in TLR signaling, viral infection, inflammasome activation, and chemokine and Xaf1 expression have also been described. Much of the evidence for SARM1 function relies on SARM1-deficient mice generated in 129 ESCs and backcrossed to B6.

View Article and Find Full Text PDF
Article Synopsis
  • Viral infections like influenza A virus (IAV) disrupt host cell functions and can be used to study how cells respond to infections.
  • IAV causes global issues in the transcription process of host genes, leading to the production of faulty RNAs, which hinders the normal antiviral response and overall virulence.
  • The NS1 protein of IAV plays a crucial role in this suppression of host gene expression, and variations in viral proteins can influence the severity of the infection.
View Article and Find Full Text PDF

The RNA helicase LGP2 (Laboratory of Genetics and Physiology 2) is a non-signaling member of the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), whose pivotal role on innate immune responses against RNA viruses is being increasingly uncovered. LGP2 is known to work in synergy with melanoma differentiation-associated gene 5 (MDA5) to promote the antiviral response induced by picornavirus infection. Here, we describe the activity of the foot-and-mouth disease virus (FMDV) Leader protease (Lpro) targeting LGP2 for cleavage.

View Article and Find Full Text PDF

Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel human coronavirus that emerged in 2012, causing severe pneumonia and acute respiratory distress syndrome (ARDS), with a case fatality rate of ~36%. When expressed in isolation, CoV accessory proteins have been shown to interfere with innate antiviral signaling pathways. However, there is limited information on the specific contribution of MERS-CoV accessory protein 4b to the repression of the innate antiviral response in the context of infection.

View Article and Find Full Text PDF

Paramyxovirus V proteins are known antagonists of the RIG-I-like receptor (RLR)-mediated interferon induction pathway, interacting with and inhibiting the RLR MDA5. We report interactions between the Nipah virus V protein and both RIG-I regulatory protein TRIM25 and RIG-I. We also observed interactions between these host proteins and the V proteins of measles virus, Sendai virus, and parainfluenza virus.

View Article and Find Full Text PDF
Article Synopsis
  • RIG-I plays a crucial role in the body's innate immunity against viruses, particularly against Sendai virus (SeV) infections.
  • In the study, researchers discovered that defective interfering (DI) RNA acts as a strong RIG-I ligand during infections with a specific SeV strain (SeV-Cantell) and also with a different strain (SeVΔC) that promotes interferon production.
  • The findings suggest that the viral C protein acts as a negative regulator of DI RNA, which further indicates that controlling DI genome production is a key function of viral proteins that inhibit interferon responses.
View Article and Find Full Text PDF

Ebola virus (EBOV) protein VP35 inhibits production of interferon alpha/beta (IFN) by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs.

View Article and Find Full Text PDF
Article Synopsis
  • The incidence of dengue virus (DENV) has surged globally, becoming endemic in over 100 countries.
  • DENV employs various strategies to evade the host's innate immune responses, particularly targeting the type I interferon system.
  • The DENV NS2B protease cofactor promotes the degradation of the DNA sensor cGAS, preventing it from detecting mitochondrial DNA and thereby inhibiting type I interferon production in infected cells.
View Article and Find Full Text PDF

Retinoic acid-inducible gene I (RIG-I) receptor recognizes 5'-triphosphorylated RNA and triggers a signalling cascade that results in the induction of type-I interferon (IFN)-dependent responses. Its precise regulation represents a pivotal balance between antiviral defences and autoimmunity. To elucidate the cellular cofactors that regulate RIG-I signalling, we performed two global RNA interference analyses to identify both positive and negative regulatory nodes operating on the signalling pathway during virus infection.

View Article and Find Full Text PDF
Article Synopsis
  • The RIG-I signaling pathway is critical for detecting viruses and initiating antiviral responses through type I interferon production, involving key interactions among RIG-I, TRIM25, and MAVS.
  • Using advanced microscopy techniques, researchers observed how these proteins interact in various cell compartments, especially during viral infections, highlighting TRIM25's shift to cytoplasmic stress granules after RIG-I activation.
  • Specific viral proteins like hepatitis C's NS3/4A and influenza A's NS1 disrupt the formation of protein complexes associated with the antiviral response, showcasing their strategies to evade the immune system.
View Article and Find Full Text PDF

Programmed cell death is essential to survival of multicellular organisms. Previously restricted to apoptosis, the concept of programmed cell death is now extended to other mechanisms, as programmed necrosis or necroptosis, autophagic cell death, pyroptosis and parthanatos, among others. Viruses have evolved to manipulate and take control over the programmed cell death response, and the infected cell attempts to neutralize viral infections displaying different stress signals and defensive pathways before taking the critical decision of self-destruction.

View Article and Find Full Text PDF

Unlabelled: The N-terminal region of the foot-and-mouth disease virus (FMDV) 3D polymerase contains the sequence MRKTKLAPT (residues 16 to 24) that acts as a nuclear localization signal. A previous study showed that substitutions K18E and K20E diminished the transport to the nucleus of 3D and 3CD and severely impaired virus infectivity. These residues have also been implicated in template binding, as seen in the crystal structures of different 3D-RNA elongation complexes.

View Article and Find Full Text PDF

Unlabelled: Interferon-induced Mx proteins show strong antiviral activity against influenza A viruses (IAVs). We recently demonstrated that the viral nucleoprotein (NP) determines resistance of seasonal and pandemic human influenza viruses to Mx, while avian isolates retain Mx sensitivity. We identified a surface-exposed cluster of amino acids in NP of pandemic A/BM/1/1918 (H1N1), comprising isoleucine-100, proline-283, and tyrosine-313, that is essential for reduced Mx sensitivity in cell culture and in vivo.

View Article and Find Full Text PDF

The cytoplasmic helicase RIG-I is an established sensor for viral 5'-triphosphorylated RNA species. Recently, RIG-I was also implicated in the detection of intracellular bacteria. However, little is known about the host cell specificity of this process and the bacterial pathogen-associated molecular pattern (PAMP) that activates RIG-I.

View Article and Find Full Text PDF

Unlabelled: Recognition of viral pathogens by the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family results in the activation of type I interferon (IFN) responses. To avoid this response, most viruses have evolved strategies that target different essential steps in the activation of host innate immunity. In this study, we report that the nonstructural protein NSs of the newly described severe fever with thrombocytopenia syndrome virus (SFTSV) is a potent inhibitor of IFN responses.

View Article and Find Full Text PDF

We have experimentally tested whether the MRKTKLAPT sequence in FMDV 3D protein (residues 16 to 24) can act as a nuclear localization signal (NLS). Mutants with substitutions in two basic residues within this sequence, K18E and K20E, were generated. A decreased nuclear localization was observed in transiently expressed 3D and its precursor 3CD, suggesting a role of K18 and K20 in nuclear targeting.

View Article and Find Full Text PDF

Innate immunity conferred by the type I interferon is critical for antiviral defense. To date only a limited number of tripartite motif (TRIM) proteins have been implicated in modulation of innate immunity and anti-microbial activity. Here we report the complementary DNA cloning and systematic analysis of all known 75 human TRIMs.

View Article and Find Full Text PDF