Publications by authors named "Sanchari Sircar"

The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood.

View Article and Find Full Text PDF

Recent focus on transcriptomic studies in food crops like rice, wheat and maize provide new opportunities to address issues related to agriculture and climate change. Re-analysis of such data available in public domain supplemented with annotations across molecular hierarchy can be of immense help to the plant research community, particularly co-expression networks representing transcriptionally coordinated genes that are often part of the same biological process. With this objective, we have developed NetREx, a Network-based Rice Expression Analysis Server, that hosts ranked co-expression networks of Oryza sativa using publicly available messenger RNA sequencing data across uniform experimental conditions.

View Article and Find Full Text PDF

In tomato (Solanum lycopersicum), mutations in the gene encoding the R2R3-MYB117 transcription factor elicit trifoliate leaves and initiate the formation of axillary meristems; however, their effects on fruit ripening remain unexplored. The fruits of a new trifoliate (tf) mutant (tf-5) were firmer and had higher °Brix values and higher folate and carotenoid contents. The transcriptome, proteome, and metabolome profiling of tf-5 reflected a broad-spectrum change in cellular homeostasis.

View Article and Find Full Text PDF

In monoecious melon (Cucumis melo), sex is determined by the differential expression of sex determination genes (SDGs) and adoption of sex-specific transcriptional programs. Histone modifications such as H3K27me3 have been previously shown to be a hallmark associated to unisexual flower development in melon; yet, no genetic approaches have been conducted for elucidating the roles of H3K27me3 writers, readers, and erasers in this process. Here we show that melon homologs to Arabidopsis LHP1, CmLHP1A and B, redundantly control several aspects of plant development, including sex expression.

View Article and Find Full Text PDF

Background: Drought is a severe environmental stress. It is estimated that about 50% of the world rice production is affected mainly by drought. Apart from conventional breeding strategies to develop drought-tolerant crops, innovative computational approaches may provide insights into the underlying molecular mechanisms of stress response and identify drought-responsive markers.

View Article and Find Full Text PDF

Identifying functionally coexpressed genes and modules has increasingly become important to understand the transcriptional flux and to understand large scale gene association. Application of the graph theory and combination of tools has allowed to understand the genic interaction and to understand the role of hub and non-hub proteins in plant development and its ability to cope with stress. Association genetics has also been coupled with network modules to map these key genes as e-QTLs.

View Article and Find Full Text PDF

Drought is one of the major environmental stress conditions affecting the yield of rice across the globe. Unraveling the functional roles of the drought-responsive genes and their underlying molecular mechanisms will provide important leads to improve the yield of rice. Co-expression relationships derived from condition-dependent gene expression data is an effective way to identify the functional associations between genes that are part of the same biological process and may be under similar transcriptional control.

View Article and Find Full Text PDF

Vibrio cholerae, the enteropathogenic gram negative bacteria is one of the main causative agents of waterborne diseases like cholera. About 1/3(rd) of the organism's genome is uncharacterised with many protein coding genes lacking structure and functional information. These proteins form significant fraction of the genome and are crucial in understanding the organism's complete functional makeup.

View Article and Find Full Text PDF