J Phys Condens Matter
July 2024
In this study, we employ density functional theory based first-principles calculations to investigate the spin-orbit effects in the electronic structure of a polar-nonpolar sandwich heterostructure namelyLaAlO3/SrTiO3/LaAlO3. Our focus on theTi-3dbands reveals an inverted ordering of theSrTiO3-t2gorbital near the n-type interface, which is consistent with earlier experimental work. In contrast, toward the p-type interface, the orbital ordering aligns with the natural ordering ofSrTiO3orbitals, influenced by crystal field splitting.
View Article and Find Full Text PDFJ Phys Condens Matter
March 2023
TheLaAlO3/KTaO3system serves as a prototype to study the electronic properties that emerge as a result of spin-orbit coupling (SOC). In this article, we have used first-principles calculations to systematically study two types of defect-free (0 0 1) interfaces, which are termed as Type-I and Type-II. While the Type-I heterostructure produces a two dimensional (2D) electron gas, the Type-II heterostructure hosts an oxygen-rich 2D hole gas at the interface.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common type of dementia that affects the elderly around the world. Chronic type 2 diabetes (T2DM) has been proven to be closely related to neurodegeneration, especially AD. T2DM is characterized by the cell's failure to take up insulin as well as chronic hyperglycemia.
View Article and Find Full Text PDFBackground: Potential therapeutic benefits of natural phytoconstituents and the emergence of nano-structured drug delivery systems have expanded the scope of enhanced chemotherapy with minimal adverse effects. Various in vivo and in vitro studies have revealed Resveratrol to be a potent anti-carcinogenic agent. Researchers are currently applying the concept of nano-science for enhancing the delivery of phyto-drugs like resveratrol, in order to carry the drug to the affected tissues and organs of cancer patients with much ease and efficiency.
View Article and Find Full Text PDFBackground And Objective: Targeted drug delivery of nanoparticles decorated with site-specific recognition ligands is of considerable interest to minimize cytotoxicity of chemotherapeutics in the normal cells. The study was designed to develop CD-340 antibody-conjugated polylactic-co-glycolic acid (PLGA) nanoparticles loaded with a highly water-soluble potent anticancer drug, doxorubicin (DOX), to specifically deliver entrapped DOX to breast cancer cells.
Methods: The study showed how to incorporate water-soluble drug in a hydrophobic PLGA (85:15) based matrix which otherwise shows poor drug loading due to leaching effect.
Hepatocellular carcinoma (HCC) is one of the major causes of cancer related death globally. Apigenin, a dietary flavonoid, possesses anti-tumor activity against HCC cells in-vitro. Development, physicochemical characterization of apigenin loaded nanoparticles (ApNp), biodistribution pattern and pharmacokinetic parameters of apigenin upon intravenous administration of ApNp, and effect of ApNp treatment in rats with HCC were investigated.
View Article and Find Full Text PDFDelivering highly water soluble drugs across blood-brain barrier (BBB) is a crucial challenge for the formulation scientists. A successful therapeutic intervention by developing a suitable drug delivery system may revolutionize treatment across BBB. Efforts were given here to unravel the capability of a newly developed fatty acid combination (stearic acid:oleic acid:palmitic acid = 8.
View Article and Find Full Text PDFBackground: Diabetes is a chronic disease that occurs when the pancreas does not produce enough insulin, or when the body cannot effectively use the insulin it produces. WHO projects that diabetes death will be doubled between 2005 and 2030, where 347 million people worldwide had diabetes as per the report of 2013. The increase in the prevalence of diabetes is due to three influences - lifestyle, ethnicity, and age.
View Article and Find Full Text PDFLipid based vesicular drug delivery system, one of the emerging technologies designed for addressing the delivery challenges of conventional drug delivery methods, has widespread applications in chemotherapeutics, immunotherapeutics, recombinant DNA technology, membrane biology and also as a diagnostic tool in different biological field. The enclosed phospholipid bilayer spherical structure, typically known as liposome, is a versatile vesicular delivery system to carry hydrophilic/hydrophobic drug generally efficiently to the site of action leading to reduced non-specific toxicity and improved bioavailability of the therapeutic moiety. Efficacy of drug encapsulated in liposome depends mainly on the circulation amount of liposome and its residence time, in vivo drug release, drug accumulation in the target site and uptake of the formulation in the reticuloendothelial system.
View Article and Find Full Text PDFHepatic cancer stands as one of the frontier causes of cancer related mortality worldwide. Among the several risk factors already established, type 2 diabetes is now considered as one of the important risks in progression of liver cancer. Studies have shown that likelihood of occurrence of liver cancer is many folds higher in patients diagnosed with type II diabetes compared to patients without diabetes.
View Article and Find Full Text PDFIn the last few decades, novel drug delivery strategies have been a big priority to the formulation scientists. Peptides and proteins have drawn a special attention for their wide scope in the area. Serum albumin, transferrin, recom- binant proteins, virus capsids etc.
View Article and Find Full Text PDFPurpose: Even though recent studies have shown that genetic changes at enhancers can influence carcinogenesis, most methylomic studies have focused on changes at promoters. We used renal cell carcinoma (RCC), an incurable malignancy associated with mutations in epigenetic regulators, as a model to study genome-wide patterns of DNA methylation at a high resolution.
Experimental Design: Analysis of cytosine methylation status of 1.
The trapping or immobilization of individual cells at specific locations in microfluidic platforms is essential for single cell studies, especially those requiring cell stimulation and downstream analysis of cellular content. Selectivity for individual cell types is required when mixtures of cells are analyzed in heterogeneous and complex matrices, such as the selection of metastatic cells within blood samples. Here, we demonstrate a microfluidic device based on direct current (DC) insulator-based dielectrophoresis (iDEP) for selective trapping of single MCF-7 breast cancer cells from mixtures with both mammalian peripheral blood mononuclear cells (PBMC) as well MDA-MB-231 as a second breast cancer cell type.
View Article and Find Full Text PDFElectrophoresis
September 2011
Trapping of individual cells at specific locations in a microfluidic lab-on-a-chip platform is essential for single cell studies, especially those requiring individual stimulation followed by downstream analysis. To this aim, we have designed microdevices based on direct current (DC) insulator-based dielectrophoresis (iDEP) acting as individual single cell traps. We present both the design of a negative iDEP trap and a positive iDEP trap using insulating posts integrated at microchannel intersections.
View Article and Find Full Text PDF