The Arabidopsis (Arabidopsis thaliana) leaf veins bundle-sheath cells (BSCs)-a selective barrier to water and solutes entering the mesophyll-increase the leaf radial hydraulic conductance (Kleaf) by acidifying the xylem sap by their plasma membrane H+-ATPase, AHA2. Based on this and on the BSCs' expression of phototropins PHOT1 and PHOT2, and the known blue light (BL)-induced Kleaf increase, we hypothesized that, resembling the guard cells, BL perception by the BSCs' phots activates its H+-ATPase, which, consequently, upregulates Kleaf. Indeed, under BL, the Kleaf of the knockout mutant lines phot1-5, phot2-1, phot1-5 phot2-1, and aha2-4 was lower than that of the wild-type (WT).
View Article and Find Full Text PDFTo address the challenge of predicting tomato yields in the field, we used whole-plant functional phenotyping to evaluate water relations under well-irrigated and drought conditions. The genotypes tested are known to exhibit variability in their yields in wet and dry fields. The examined lines included two lines with recessive mutations that affect carotenoid biosynthesis, zeta z and tangerine t, both isogenic to the processing tomato variety M82.
View Article and Find Full Text PDFThe recent years have witnessed the emergence of high-throughput phenotyping techniques. In particular, these techniques can characterize a comprehensive landscape of physiological traits of plants responding to dynamic changes in the environment. These innovations, along with the next-generation genomic technologies, have brought plant science into the big-data era.
View Article and Find Full Text PDFThe leaf vascular bundle sheath cells (BSCs) that tightly envelop the leaf veins, are a selective and dynamic barrier to xylem sap water and solutes radially entering the mesophyll cells. Under normal conditions, xylem sap pH below 6 is presumably important for driving and regulating the transmembranal solute transport. Having discovered recently a differentially high expression of a BSC proton pump, AHA2, we now test the hypothesis that it regulates the xylem sap pH and leaf radial water fluxes.
View Article and Find Full Text PDFPlants are autotrophic organisms in which there are linear relationships between the rate at which organic biomass is accumulated and many ambient parameters such as water, nutrients, CO and solar radiation. These linear relationships are the result of good feedback regulation between a plants sensing of the environment and the optimization of its performance response. In this review, we suggest that continuous monitoring of the plant physiological profile in response to changing ambient conditions could be a useful new phenotyping tool, allowing the characterization and comparison of different levels of functional phenotypes and productivity.
View Article and Find Full Text PDF