Publications by authors named "Sanbing Shen"

While previous research has demonstrated the therapeutic efficacy of telomerase reverse transcriptase (TERT) overexpression using adeno-associated virus and cytomegalovirus vectors to combat aging, the broader implications of TERT germline gene editing on the mammalian genome, proteomic composition, phenotypes, lifespan extension, and damage repair remain largely unexplored. In this study, we elucidate the functional properties of transgenic mice carrying the Tert transgene, guided by precise gene targeting into the Rosa26 locus via embryonic stem (ES) cells under the control of the elongation factor 1α (EF1α) promoter. The Tert knock-in (TertKI) mice harboring the EF1α-Tert gene displayed elevated telomerase activity, elongated telomeres, and extended lifespan, with no spontaneous genotoxicity or carcinogenicity.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC) technology, in combination with electrophysiological characterization via multielectrode array (MEA), has facilitated the utilization of iPSC-derived motor neurons (iPSC-MNs) as highly valuable models for underpinning pathogenic mechanisms and developing novel therapeutic interventions for motor neuron diseases (MNDs). However, the challenge of MN adherence to the MEA plate and the heterogeneity presented in iPSC-derived cultures raise concerns about the reproducibility of the findings obtained from these cellular models. We discovered that one novel factor modulating the electrophysiological activity of iPSC-MNs is the extracellular matrix (ECM) used in the coating to support in vitro growth, differentiation and maturation of iPSC-MNs.

View Article and Find Full Text PDF
Article Synopsis
  • Long-QT syndrome type 3 (LQT3) is a cardiac ion channel disorder that increases the risk of dangerous heart rhythms, and this study aimed to create a model using human induced pluripotent stem cells (hiPSCs) to better understand the disease and test potential treatments.!
  • Researchers generated hiPSCs from a patient with LQT3 and a healthy individual, employing CRISPR/Cas9 to introduce the same genetic mutation into healthy cells; all hiPSC lines were then converted into heart cells for analysis.!
  • Both patient-derived and engineered LQT3 heart cells exhibited longer repolarization times, but treatments like mexiletine, nifedipine, and verapamil could effectively alter these
View Article and Find Full Text PDF

Background: Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development.

View Article and Find Full Text PDF

Since its inception, induced pluripotent stem cell (iPSC) technology has been hailed as a powerful tool for comprehending disease etiology and advancing drug screening across various domains. While earlier iPSC-based disease modeling and drug assessment primarily operated at the cellular level, recent years have witnessed a significant shift towards organoid-based investigations. Organoids derived from iPSCs offer distinct advantages, particularly in enabling the observation of disease progression and drug metabolism in an in vivo-like environment, surpassing the capabilities of iPSC-derived cells.

View Article and Find Full Text PDF

Background And Aims: Mesenchymal stromal cells (MSCs) a potentially effective disease-modulating therapy for diabetic nephropathy (DN) but their clinical translation has been hampered by incomplete understanding of the optimal timing of administration and in vivo mechanisms of action. This study aimed to elucidate the reno-protective potency and associated mechanisms of single intravenous injections of human umbilical cord-derived MSCs (hUC-MSCs) following shorter and longer durations of diabetes.

Methods: A streptozotocin (STZ)-induced model of diabetes and DN was established in C57BL/6 mice.

View Article and Find Full Text PDF

Developmental and epileptic encephalopathies (DEEs) are a group of severe, early-onset epilepsies which are often caused by genetic mutations in ion channels. Mutations in KCNQ2, which encodes the voltage-gated potassium channel Kv7.2, is known to cause DEE.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) have been widely used in cardiac disease modelling, drug discovery, and regenerative medicine as they can be differentiated into patient-specific cardiomyocytes. Long QT syndrome type 3 (LQT3) is one of the more malignant congenital long QT syndrome (LQTS) variants with an SCN5A gain-of-function effect on the gated sodium channel. Moreover, the predominant pathogenic variants in LQTS genes are single nucleotide substitutions (missense) and small insertion/deletions (INDEL).

View Article and Find Full Text PDF

Sporadic amyotrophic lateral sclerosis (sALS) is the majority of ALS, and the lack of appropriate disease models has hindered its research. Induced pluripotent stem cell (iPSC) technology now permits derivation of iPSCs from somatic cells of sALS patients to investigate disease phenotypes and mechanisms. Most existing differentiation protocols are time-consuming or low efficient in generating motor neurons (MNs).

View Article and Find Full Text PDF
Article Synopsis
  • Motile cilia on ependymal cells are essential for cerebrospinal fluid (CSF) flow, and their dysfunction can lead to hydrocephalus, which is also linked to proteins like Unc51-like-kinase 4 (Ulk4) and serine/threonine kinase 36 (STK36).
  • Studies show that the interaction between Ulk4 and STK36 occurs through their N-terminal kinase domains, and both proteins are necessary for the proper function and formation of cilia in the brain, as seen in mutant mice.
  • Mutations in Stk36 mirror the effects seen in Ulk4 mutants, resulting in similar ciliary defects and disrupted
View Article and Find Full Text PDF

Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes.

View Article and Find Full Text PDF

Juvenile osteochondritis dissecans (JOCD) is a pediatric disease, which begins with an osteonecrotic lesion in the secondary ossification center which, over time, results in the separation of the necrotic fragment from the parent bone. JOCD predisposes to early-onset osteoarthritis. However, the knowledge gap in JOCD pathomechanisms severely limits current therapeutic strategies.

View Article and Find Full Text PDF

KCNQ2 encodes the potassium-gated voltage channel Kv7.2, responsible for the M-current, which contributes to neuronal resting membrane potential. Pathogenic variants in KCNQ2 cause early onset epilepsies, developmental and epileptic encephalopathies.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is still a slightly less orphan disease after immunotherapy, and routine treatment has low efficiency and adverse events. Ginseng is commonly used in the treatment of NSCLC. The purpose of this study is to assess the efficacy and hemorheological indexes of ginseng and its active components in patients with non-small cell lung cancer.

View Article and Find Full Text PDF

Skin punch biopsy was donated by a healthy 51-year-old Caucasian male and the dermal fibroblasts were reprogrammed into human induced pluripotent stem cell (hiPSC) lines by using non-integrative Sendai viruses expressing OCT4, SOX2, KLF4 and c-MYC. Three iPSC lines (NUIGi046-A, NUIGi046-B, NUIGi046-C) highly expressed the pluripotent markers and were capable of differentiating into cells of endodermal, mesodermal, and ectodermal origin. These iPSCs can be offered as controls and in combination with genome-editing and three-dimensional (3D) system.

View Article and Find Full Text PDF

Long QT syndrome type 2 (LQT2) is associated with KCNH2, which encodes the α subunit of the ion channel that controls the K current in the heart. Mutations of KCNH2 cause loss of Kv11.1 channel function by disrupting subunit folding, assembly, or trafficking of the channel to the cell surface.

View Article and Find Full Text PDF

Background: NRXN1 deletions are identified as one of major rare risk factors for autism spectrum disorder (ASD) and other neurodevelopmental disorders. ASD has 30% co-morbidity with epilepsy, and the latter is associated with excessive neuronal firing. NRXN1 encodes hundreds of presynaptic neuro-adhesion proteins categorized as NRXN1α/β/γ.

View Article and Find Full Text PDF

We report the generation of three human induced pluripotent stem cell (hiPSC) lines (NUIGi047-A, NUIGi047-B, NUIGi047-C) from a healthy 7-year-old boy using non-integrational Sendai re-programming method expressing OCT4, SOX2, KLF4 and C-MYC. Stem cell characterization was confirmed through morphology, immunofluorescence staining and RT-qPCR. Differentiation potential in vitro was demonstrated to all three germ layers with STR lineage verification and normal molecular karyotyping through the process of re-programming.

View Article and Find Full Text PDF

Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a member of the vasoactive intestinal polypeptide (VIP)-the secretin-glucagon family of neuropeptides. They act through two classes of receptors: PACAP type 1 (PAC1) and type 2 (VPAC1 and VPAC2). Among their pleiotropic effects throughout the body, PACAP functions as neuromodulators and neuroprotectors, rescuing neurons from apoptosis, mostly through the PAC1 receptor.

View Article and Find Full Text PDF

NRXN1 deletions are commonly found in autism spectrum disorder (ASD) and other neurodevelopmental/neuropsychiatric disorders. Derivation of induced pluripotent stem cells (iPSCs) from different diseases involving different deletion regions are essential, as NRXN1 may produce thousands of splicing variants. We report here the derivation of iPSCs from a sibling control and an ASD proband carrying de novo heterozygous deletions in the middle region of NRXN1, using a non-integrating Sendai viral kit.

View Article and Find Full Text PDF

NRXN1 encodes thousands of splicing variants categorized into long NRXN1α, short NRXN1β and extremely short NRXN1γ, which exert differential roles in neuronal excitation/inhibition. NRXN1α deletions are common in autism spectrum disorder (ASD) and other neurodevelopmental/neuropsychiatric disorders. We derived induced pluripotent stem cells (iPSCs) from one sibling control and two ASD probands carrying NRXN1α, using non-integrating Sendai viral method.

View Article and Find Full Text PDF

The induced pluripotent stem cell (iPSC) technology has offered an unprecedented opportunity for disease modelling and drug discovery. Here we used non-integrating Sendai viral method and derived iPSCs from three young healthy Caucasian donors. All iPSCs expressed pluripotency markers highly and could be differentiated into three germ lineages.

View Article and Find Full Text PDF

Autism Spectrum Disorder (ASD) is a heterogeneous disorder that is often accompanied with many co-morbidities. Recent genetic studies have identified various pathways from hundreds of candidate risk genes with varying levels of association to ASD. However, it is unknown which pathways are specific to the core symptoms or which are shared by the co-morbidities.

View Article and Find Full Text PDF

Two human induced pluripotent stem cell (hiPSC) lines (NUIGi038-A, NUIGi038-B) were generated from dermal fibroblasts of a healthy 47 year old female using non-integrational Sendai reprogramming method expressing OCT4, SOX2, KLF4 and C-MYC. Characterization of both hiPSC lines was confirmed by the expression of typical pluripotency markers and differentiation potential in vitro.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5hrfj94e4f2ces4jn735a8qv1ut08dvv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once