Aggregation of misfolded α-synuclein (aSyn) within the brain is the pathologic hallmark of Lewy body diseases (LBD), including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Evidence exists for aSyn "strains" - conformations with distinct biological properties. However, biomarkers for PD vs.
View Article and Find Full Text PDFImaging Neurosci (Camb)
May 2024
MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high-resolution dataset of 135 postmortem human brain tissue specimens imaged at 0.
View Article and Find Full Text PDFSpread and aggregation of misfolded α-synuclein (aSyn) within the brain is the pathologic hallmark of Lewy body diseases (LBD), including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). While evidence exists for multiple aSyn protein conformations, often termed "strains" for their distinct biological properties, it is unclear whether PD and DLB result from aSyn strain differences, and biomarkers that differentiate PD and DLB are lacking. Moreover, while pathological forms of aSyn have been detected outside the brain ( in skin, gut, blood), the functional significance of these peripheral aSyn species is unclear.
View Article and Find Full Text PDFBehavioral variant frontotemporal dementia (bvFTD) is a clinical syndrome primarily caused by either tau (bvFTD-tau) or TDP-43 (bvFTD-TDP) proteinopathies. We previously found lower cortical layers and dorsolateral regions accumulate greater tau than TDP-43 pathology; however, patterns of laminar neurodegeneration across diverse cytoarchitecture in bvFTD is understudied. We hypothesized that bvFTD-tau and bvFTD-TDP have distinct laminar distributions of pyramidal neurodegeneration along cortical gradients, a topologic order of cytoarchitectonic subregions based on increasing pyramidal density and laminar differentiation.
View Article and Find Full Text PDFIntroduction: Multimodal evidence indicates Alzheimer's disease (AD) is characterized by early white matter (WM) changes that precede overt cognitive impairment. WM changes have overwhelmingly been investigated in typical, amnestic mild cognitive impairment and AD; fewer studies have addressed WM change in atypical, non-amnestic syndromes. We hypothesized each non-amnestic AD syndrome would exhibit WM differences from amnestic and other non-amnestic syndromes.
View Article and Find Full Text PDFObjective: Alzheimer's disease neuropathologic change and alpha-synucleinopathy commonly co-exist and contribute to the clinical heterogeneity of dementia. Here, we examined tau epitopes marking various stages of tangle maturation to test the hypotheses that tau maturation is more strongly associated with beta-amyloid compared to alpha-synuclein, and within the context of mixed pathology, mature tau is linked to Alzheimer's disease clinical phenotype and negatively associated with Lewy body dementia.
Methods: We used digital histology to measure percent area-occupied by pathology in cortical regions among individuals with pure Alzheimer's disease neuropathologic change, pure alpha-synucleinopathy, and a co-pathology group with both Alzheimer's and alpha-synuclein pathologic diagnoses.
Objective: Within Lewy body spectrum disorders (LBSD) with α-synuclein pathology (αSyn), concomitant Alzheimer's disease (AD) pathology is common and is predictive of clinical outcomes, including cognitive impairment and decline. Plasma phosphorylated tau 181 (p-tau ) is sensitive to AD neuropathologic change (ADNC) in clinical AD, and plasma glial fibrillary acidic protein (GFAP) is associated with the presence of β-amyloid plaques. While these plasma biomarkers are well tested in clinical and pathological AD, their diagnostic and prognostic performance for concomitant AD in LBSD is unknown.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
November 2022
3R/4R-tau species are found in Alzheimer disease (AD) and ∼50% of Lewy body dementias at autopsy (LBD+tau); 4R-tau accumulations are found in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Digital image analysis techniques can elucidate patterns of tau pathology more precisely than traditional methods but repeatability across centers is unclear. We calculated regional percentage areas occupied by tau pathological inclusions from the middle frontal cortex (MFC), superior temporal cortex (STC), and angular gyrus (ANG) from cases from the University of Pennsylvania and the University of California San Diego with AD, LBD+tau, PSP, or CBD (n = 150) using QuPath.
View Article and Find Full Text PDFBackground And Objectives: CSF biomarkers β-amyloid 1-42 (Aβ), phosphorylated tau 181 (p-tau), total tau (t-tau), and neurogranin (Ng) can diagnose Alzheimer disease (AD) in life. However, it is unknown whether CSF concentrations, and thus their accuracies, are affected by concomitant pathologies common in AD, such as α-synuclein (αSyn). Our primary goal was to test whether biomarkers in patients with AD are altered by concomitant αSyn.
View Article and Find Full Text PDFAlzheimer's disease neuropathologic change (ADNC) is clinically heterogenous and can present with a classic multidomain amnestic syndrome or focal non-amnestic syndromes. Here, we investigated the distribution and burden of phosphorylated and C-terminally cleaved tau pathologies across hippocampal subfields and cortical regions among phenotypic variants of Alzheimer's disease (AD). In this study, autopsy-confirmed patients with ADNC, were classified into amnestic (aAD, N = 40) and non-amnestic (naAD, N = 39) groups based on clinical criteria.
View Article and Find Full Text PDFAging is a major risk factor for Alzheimer's disease (AD), the most common cause of dementia worldwide. TDP-43 proteinopathy is reported to be associated with AD pathology is almost 50% of cases. Our exploratory study examined near end-stage (28 months old) mice selectively driving expression of human TDP-43 in the hippocampus and cortex in an APP/PSEN1 background.
View Article and Find Full Text PDF