Publications by authors named "Sanam Mustafa"

Age is the number one risk factor for developing a neurodegenerative disease (ND), such as Alzheimer's disease (AD) or Parkinson's disease (PD). With our rapidly ageing world population, there will be an increased burden of ND and need for disease-modifying treatments. Currently, however, translation of research from bench to bedside in NDs is poor.

View Article and Find Full Text PDF

Poor sleep is thought to enhance pain via increasing peripheral and/or central sensitization. Aerobic exercise, conversely, relives pain via reducing sensitization, among other mechanisms. This raises two clinical questions: (1) does poor sleep contribute to the transition from acute-to-persistent pain, and (2) can exercise protect against this transition? This study tested these questions and explored underlying mechanisms in a controlled injury model.

View Article and Find Full Text PDF

Introduction: Fyn kinase is an Src family kinase (SFK) widely expressed in many tissues, including the CNS. Recently, Fyn kinase activation has been associated with pathological mechanisms underlying neurodegenerative diseases and, as such, the role of Fyn dysfunction is under investigation. In particular, Fyn is implicated as a major upstream regulator of neuroinflammation in Parkinson's Disease (PD).

View Article and Find Full Text PDF
Article Synopsis
  • * Using large genome-wide association studies, researchers found that higher levels of CRP are genetically correlated with these chronic pain types, indicating a possible shared genetic background.
  • * The findings suggest that higher CRP levels may causally contribute to chronic pain, highlighting the need for more extensive research to discover new treatment targets for these conditions.
View Article and Find Full Text PDF

The transition from acute to chronic pain is an ongoing major problem for individuals, society and healthcare systems around the world. It is clear chronic pain is a complex multidimensional biological challenge plagued with difficulties in pain management, specifically opioid use. In recent years the role of the immune system in chronic pain and opioid pharmacology has come to the forefront.

View Article and Find Full Text PDF

Oocyte developmental potential is intimately linked to metabolism. Existing approaches to measure metabolism in the cumulus oocyte complex (COC) do not provide information on the separate cumulus and oocyte compartments. Development of an assay that achieves this may lead to an accurate diagnostic for oocyte quality.

View Article and Find Full Text PDF

Pain impacts the lives of billions of people around the world - both directly and indirectly. It is complex and transcends beyond an unpleasant sensory experience to encompass emotional experiences. To date, there are no successful treatments for sufferers of chronic pain.

View Article and Find Full Text PDF

The use of synthetic nanomaterials as contrast agents, sensors, and drug delivery vehicles in biological research primarily requires effective approaches for intracellular delivery. Recently, the well-accepted microelectrophoresis technique has been reported to exhibit the ability to deliver nanomaterials, quantum dots (QDs) as an example, into live cells, but information about cell viability and intracellular fate of delivered nanomaterials is yet to be provided. Here we show that cell viability following microelectrophoresis of QDs is strongly correlated with the amount of delivered QDs, which can be finely controlled by tuning the ejection duration to maintain long-term cell survival.

View Article and Find Full Text PDF

Study Question: Can label-free, non-invasive optical imaging by hyperspectral autofluorescence microscopy discern between euploid and aneuploid cells within the inner cell mass (ICM) of the mouse preimplantation embryo?

Summary Answer: Hyperspectral autofluorescence microscopy enables discrimination between euploid and aneuploid ICM in mouse embryos.

What Is Known Already: Euploid/aneuploid mosaicism affects up to 17.3% of human blastocyst embryos with trophectoderm biopsy or spent media currently utilized to diagnose aneuploidy and mosaicism in clinical in vitro fertilization.

View Article and Find Full Text PDF

Our understanding of chronic pain and the underlying molecular mechanisms remains limited due to a lack of tools to identify the complex phenomena responsible for exaggerated pain behaviours. Furthermore, currently there is no objective measure of pain with current assessment relying on patient self-scoring. Here, we applied a fully biologically unsupervised technique of hyperspectral autofluorescence imaging to identify a complex signature associated with chronic constriction nerve injury known to cause allodynia.

View Article and Find Full Text PDF

Fyn is a non-receptor tyrosine kinase belonging to the Src family of kinases (SFKs) which has been implicated in several integral functions throughout the central nervous system (CNS), including myelination and synaptic transmission. More recently, Fyn dysfunction has been associated with pathological processes observed in neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Neurodegenerative diseases are amongst the leading cause of death and disability worldwide and, due to the ageing population, prevalence is predicted to rise in the coming years.

View Article and Find Full Text PDF

Biased pharmacological modulators provide potential therapeutic benefits, including greater pharmacodynamic specificity, increased efficiency and reduced adverse effects. Therefore, the identification of such modulators as drug candidates is highly desirable. Currently, attention was mainly paid to biased signaling modulators targeting G protein-coupled receptors (GPCRs).

View Article and Find Full Text PDF

Nanoparticles with specific properties and functions have been developed for various biomedical research applications, such as in vivo and in vitro sensors, imaging agents and delivery vehicles of therapeutics. The development of an effective delivery method of nanoparticles into the intracellular environment is challenging and success in this endeavor would be beneficial to many biological studies. Here, the well-established microelectrophoresis technique was applied for the first time to deliver nanoparticles into living cells.

View Article and Find Full Text PDF

Zerumbone has shown great potential in various pathophysiological models of diseases, particularly in neuropathic pain conditions. Further understanding the mechanisms of action is important to develop zerumbone as a potential anti-nociceptive agent. Numerous receptors and pathways function to inhibit and modulate transmission of pain signals.

View Article and Find Full Text PDF

Corticosterone (CORT), a critical mediator of the hypothalamus pituitary adrenal axis in rodents, is a stress hormone that is classically viewed as possessing immune-suppressive properties. CORT is now appreciated to also mediate the neuroimmune-priming effect of stress to innate-immune stimulation, and hence serves as a mechanistic link to the neuroimmune involvement in stress-related disorders. However, these dichotomous actions of CORT remain poorly defined.

View Article and Find Full Text PDF
Article Synopsis
  • Adolescents are prone to risky behaviors like binge drinking, which can impact brain development and increase reward-seeking behavior later in life.
  • A new animal model using Balb/c mice was created to study the effects of early adolescent binge drinking on TLR4 (a receptor involved in immune response) and alcohol-related behaviors in adulthood.
  • The study found that low doses of alcohol during adolescence led to increased alcohol preference and intake in later life, suggesting that even minimal alcohol exposure during critical developmental windows can influence future drinking behaviors and neuroimmune signaling.
View Article and Find Full Text PDF

Circadian rhythm affects drug-induced reward behaviour and the innate immune system. Peaks in reward-associated behaviour and immune responses typically occur during the active (dark) phase of rodents. While the role of the immune system, specifically, Toll-like receptor 4 (TLR4, an innate immune receptor) in drug-induced reward is becoming increasingly appreciated, it is unclear whether its effects vary according to light-cycle.

View Article and Find Full Text PDF
Article Synopsis
  • Neuro-immune interactions are crucial for understanding both healthy and diseased states of the brain and spinal cord, emphasizing the need for improved molecular analysis techniques.
  • Current imaging methods in this field, adapted from immunology and neuroscience, have limitations that hinder our understanding of the central nervous system (CNS).
  • The review focuses on presenting new and innovative imaging technologies that can better address these limitations, making it easier for medical scientists to study neuroimmune responses.
View Article and Find Full Text PDF

Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited efficacy of neuronally acting medications, such as acamprosate and naltrexone, highlights the need to identify novel targets. Recent research has underscored the importance of the neuroimmune system in many behavioural manifestations of drug addiction.

View Article and Find Full Text PDF

Opioids are considered the gold standard for the treatment of moderate to severe pain. However, heterogeneity in analgesic efficacy, poor potency and side effects are associated with opioid use, resulting in dose limitations and suboptimal pain management. Traditionally thought to exhibit their analgesic actions via the activation of the neuronal G-protein-coupled opioid receptors, it is now widely accepted that neuronal activity of opioids cannot fully explain the initiation and maintenance of opioid tolerance, hyperalgesia and allodynia.

View Article and Find Full Text PDF

Accurate quantification of Förster resonance energy transfer (FRET) using intensity-based methods is difficult due to the overlap of fluorophore excitation and emission spectra. Consequently, mechanisms are required to remove bleedthrough of the donor emission into the acceptor channel and direct excitation of the acceptor when aiming to excite only the donor fluorophores. Methods to circumvent donor bleedthrough using the unmixing of emission spectra have been reported, but these require additional corrections to account for direct excitation of the acceptor.

View Article and Find Full Text PDF

The idea of "receptor mosaics" is that proteins may form complex and dynamic networks with respect to time and composition. These have the potential to markedly expand the diversity and specificity of G protein-coupled receptors (GPCR) signaling, particularly in neural cells, where a few key receptors have been implicated in many neurological and psychiatric disorders, including addiction. Metabotropic glutamate type 5 receptors (mGlu5) can form complexes with other GPCRs, including adenosine A(2A) and dopamine D(2) receptors.

View Article and Find Full Text PDF

We have provided the first evidence for specific heteromerization between the α(1A)-adrenoceptor (α(1A)AR) and CXC chemokine receptor 2 (CXCR2) in live cells. α(1A)AR and CXCR2 are both expressed in areas such as the stromal smooth muscle layer of the prostate. By utilizing the G protein-coupled receptor (GPCR) heteromer identification technology on the live cell-based bioluminescence resonance energy transfer (BRET) assay platform, our studies in human embryonic kidney 293 cells have identified norepinephrine-dependent β-arrestin recruitment that was in turn dependent upon co-expression of α(1A)AR with CXCR2.

View Article and Find Full Text PDF

Agonists of the sphingosine-1-phosphate (S1P) receptors, like fingolimod (FTY720), are a novel class of immunomodulators. Administration of these compounds prevents the egress of lymphocytes from primary and secondary lymphoid organs causing peripheral blood lymphopenia. Although it is well established that lymphopenia is mediated by S1P receptor type 1 (S1P1), the exact mechanism is still controversial.

View Article and Find Full Text PDF