Publications by authors named "Sana Jahanshahi-Anbuhi"

A tunable plasmonic sensor has been developed by varying the dextran content in the initially synthesized dextran-gold nanoparticle (dAuNPs) solution. A colloidal nanogold solution (dAuNPs-Sol) was initially prepared using dextran and gold salt in alkaline media by a one-pot green synthetic route. The dAuNPs-Sol was combined with varying amounts of dextran (ranging from 0.

View Article and Find Full Text PDF

The colorimetric detection of glucose in urine through enzymatic reactions offers a low-cost and non-invasive method to aid in diabetes management. Nonetheless, the vulnerability of enzymes to environmental conditions, particularly elevated temperatures, and their activity loss pose significant challenges for transportation and storage. In this work, we developed a stable and portable tablet sensor as a user-friendly platform for glucose monitoring.

View Article and Find Full Text PDF

To date, a range of nanozymes has been reported for their enzyme-mimicking catalytic activity such as solution-based sensors. However, in remote areas, the need for portable, cost-effective, and one-pot prepared sensors is obvious. In this study, we report the development of a highly stable and sensitive gold tablet-based sensor for cysteamine quantification in human serum samples.

View Article and Find Full Text PDF

Recent years have witnessed an exponential increase in the research on gold nanoparticles (AuNPs)-based colorimetric sensors to revolutionize point-of-use sensing devices. Hence, this review is compiled focused on current progress in the design and performance parameters of AuNPs-based sensors. The review begins with the characteristics of AuNPs, followed by a brief explanation of synthesis and functionalization methods.

View Article and Find Full Text PDF

Many applications using gold nanoparticles (AuNPs) require (i) their functionalization with a biopolymer to increase their stability and (ii) their transformation into an easy-to-handle material, which provide them with specific properties. In this research, a portable tablet platform is presented based on dextran-encapsulated gold nanoparticles (AuNPs-dTab) by a ligand exchange reaction between citrate-capped gold nanoparticles (AuNPs-Cit) and dextran. These newly fabricated tablets were characterized utilizing ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction spectroscopy (XRD), differential scanning calorimetry (DSC), and atomic force microscopy (AFM) techniques.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory disease coronavirus 2 (SARS-CoV-2), has led to millions of confirmed cases and deaths worldwide. Efficient diagnostic tools are in high demand, as rapid and large-scale testing plays a pivotal role in patient management and decelerating disease spread. This paper reviews current technologies used to detect SARS-CoV-2 in clinical laboratories as well as advances made for molecular, antigen-based, and immunological point-of-care testing, including recent developments in sensor and biosensor devices.

View Article and Find Full Text PDF

A novel and highly sensitive tablet-based colorimetric sensor is developed for the detection of phosphate (Pi) in drinking and surface water using mercaptoacetic acid-capped gold nanoparticles (MA-AuNPs). Characterization of AuNPs and MA-AuNPs was achieved by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Dynamic light scattering (DLS). The principle of this sensor is based on the aggregation and disaggregation mechanisms of AuNPs that result in a color change from blue to red due to the surface plasmon resonance effect, where europium ions (Eu) act as the aggregating agent.

View Article and Find Full Text PDF

Most currently available vaccines, particularly live vaccines, require the cold chain, as vaccine efficacy can be significantly hampered if they are not stored in a temperature range of 2-8 °C at all times. This necessity places a tremendous financial and logistical burden on vaccination programs, particularly in the developing world. The development of thermally stable vaccines can greatly alleviate this problem and, in turn, increase vaccine accessibility worldwide.

View Article and Find Full Text PDF

We present a simple all-in-one paper-based sensor for E. coli detection using a composite ink made of a fluorogenic DNAzyme probe for bacterial recognition and signal generation, lysozyme that lyses whole bacterial cells, and pullulan/trehalose sugars that stabilize printed bioactive molecules. The paper sensor is capable of producing a fluorescence signal as a readout within 5 minutes upon contacting E.

View Article and Find Full Text PDF

We describe a versatile and simple method to perform sequential reactions on paper analytical devices by stacking dry pullulan films on paper, where each film contains one or more reagents or acts as a delay layer. Exposing the films to an aqueous solution of the analyte leads to sequential dissolution of the films in a temporally controlled manner followed by diffusive mixing of the reagents, so that sequential reactions can be performed. The films can be easily arranged for lateral flow assays or for spot tests (reactions take place sequentially in the z-direction).

View Article and Find Full Text PDF

RNA is a functionally versatile polymer but suffers from susceptibility to spontaneous and RNase-catalyzed degradation. This vulnerability makes it difficult to preserve RNA for extended periods of time, thus limiting its use in various contexts, including practical applications as functional nucleic acids. Here we present a simple method to preserve RNA by pullulan (a complex sugar produced by Aureobasidium pullulans fungus) film formation.

View Article and Find Full Text PDF

Many biodetection systems employ labile enzymes and substrates that need special care, making it hard to routinely use them for point-of-care or field applications. In this work we provide a simple solution to this challenging problem through the creation of all-inclusive pullulan assay tablets. The proposed tablet system not only enhances the long-term stability of both enzymes and organic substrates, but also simplifies the assay procedure.

View Article and Find Full Text PDF

We report on a paper device capable of carrying out target-induced rolling circle amplification (RCA) to produce massive DNA amplicons that can be easily visualized. Interestingly, we observed that RCA was more proficient on paper than in solution, which we attribute to a significantly higher localized concentration of immobilized DNA. Furthermore, we have successfully engineered a fully functional paper device for sensitive DNA or microRNA detection via printing of all RCA-enabling molecules within a polymeric sugar film formed from pullulan, which was integrated with the paper device.

View Article and Find Full Text PDF

The utility of hydrophobic wax barriers in paper-based lateral flow and multiwell devices for containment of aqueous solvents was extended to organic solvents and challenging aqueous surfactant solutions by preparation of a three layer barrier, consisting of internal pullulan impregnated paper barriers surrounded by external wax barriers. When paper impregnated with pullulan solution dries, the polymer forms solvent blocking lenses in the paper structure. Lens formation was illustrated by forming pullulan lenses in glass capillaries.

View Article and Find Full Text PDF

In this study, a paper-based point-of-care (POC) colorimetric biosensor was developed for the detection of lactate dehydrogenase in serum using a nonporous, oxygen impermeable reversibly gelling polysaccharide material based on pullulan. The pullulan could be printed onto paper surfaces along with all required assay reagents, providing a means for high-stability immobilization of all reagents on paper. Serum containing lactate dehydrogenase (LDH) was directly spotted on to the pullulan-coated bioactive paper and provided quantitative colorimetric data that was comparable to that obtained with a conventional plate-reader method.

View Article and Find Full Text PDF

In this paper we describe a combination of paper-based sensors and a novel smart-phone application for on-site quantification of colorimetric readouts as an ultra-low cost solution to monitoring water quality. The system utilizes a paper-based analytical device (μPAD) that produces a colorimetric signal that is dependent on the concentration of a specific target; a cell phone equipped with a camera for capturing images of two μPADs - one tested with a water sample and the other tested with clean water that is used as a control; and an on-site image processing app that uses a novel algorithm for quantifying color intensity and relating this to contaminant concentration. The cell phone app utilizes a pixel counting algorithm that performs with less bias and user subjectivity than the typically used lab-based software, ImageJ.

View Article and Find Full Text PDF

A simple and inexpensive method is reported for the long-term stabilization of enzymes and other unstable reagents in premeasured quantities in water-soluble tablets (cast, not compressed) made with pullulan, a nonionic polysaccharide that forms an oxygen impermeable solid upon drying. The pullulan tablets dissolve in aqueous solutions in seconds, thereby facilitating the easy execution of bioassays at remote sites with no need for special reagent handling and liquid pipetting. This approach is modular in nature, thus allowing the creation of individual tablets for enzymes and their substrates.

View Article and Find Full Text PDF

Water soluble pullulan films were formatted into paper-based microfluidic devices, serving as a controlled time shutoff valve. The utility of the valve was demonstrated by a one-step, fully automatic implementation of a complex pesticide assay requiring timed, sequential exposure of an immobilized enzyme layer to separate liquid streams. Pullulan film dissolution and the capillary wicking of aqueous solutions through the device were measured and modeled providing valve design criteria.

View Article and Find Full Text PDF

This paper reports the development of a method to control the flow rate of fluids within paper-based microfluidic analytical devices. We demonstrate that by simply sandwiching paper channels between two flexible films, it is possible to accelerate the flow of water through paper by over 10-fold. The dynamics of this process are such that the height of the liquid is dependent on time to the power of 1/3.

View Article and Find Full Text PDF