In real-world clinical settings, traditional deep learning-based classification methods struggle with diagnosing newly introduced disease types because they require samples from all disease classes for offline training. Class incremental learning offers a promising solution by adapting a deep network trained on specific disease classes to handle new diseases. However, catastrophic forgetting occurs, decreasing the performance of earlier classes when adapting the model to new data.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Deep learning models trained with an insufficient volume of data can often fail to generalize between different equipment, clinics, and clinicians or fail to achieve acceptable performance. We improve cardiac ultrasound segmentation models using unlabeled data to learn recurrent anatomical representations via self-supervision. In addition, we leverage supervised local contrastive learning on sparse labels to improve the segmentation and reduce the need for large amounts of dense pixel-level supervisory annotations.
View Article and Find Full Text PDF