Publications by authors named "San-Jun Chen"

Objective: To investigate the effect of CXCR4 gene on the proliferation, adhesion, invasion and tumorigenicity of a human monocytic leukemic cell line SHI-1.

Methods: The lentivirus vector silencing the expression of CXCR4 was constructed for infection of SHI-1 cells silencing expression of CXCR4 in SHI-1 cells. The expression of CXCR4, MMP-2 and MMP-9 was detected by real time PCR.

View Article and Find Full Text PDF

Freshwater planarian flatworm possesses an extraordinary ability to regenerate lost body parts after amputation; it is perfect organism model in regeneration and stem cell biology. Recently, small RNAs have been an increasing concern and studied in many aspects, including regeneration and stem cell biology, among others. In the current study, the large-scale cloning and sequencing of sRNAs from the intact and regenerative planarian Dugesia japonica are reported.

View Article and Find Full Text PDF

Objective: To estimate the life expectancy of persons with physical disabilities in China based on data related to representative national disability.

Methods: Life table technique was used to estimate the life expectancy and its standard error by various characteristics on the basis of average mortality rates from the monitoring cases during 2007 - 2010.

Results: (1) Females were expected to live longer than males.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) (noncoding RNAs of 20-25 nucleotides) play important roles in the post-transcriptional regulation of gene expression in various eukaryotes and prokaryotes. Piwi-interacting RNAs function by combining with PIWI proteins to regulate protein synthesis and to stabilize mRNA, the chromatin framework, and genome structure. This study investigates the role of miRNAs in regeneration.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are ~22-nt small non-coding RNAs that regulate the expression of specific target genes in many eukaryotes. miRNAs have been shown to play important roles in stem cell maintenance, cell fate determination, and differentiation. Planarians are capable of regenerating entire body plans from tiny fragments; this regenerative capacity is facilitated by a population of pluripotent stem cells known as neoblasts.

View Article and Find Full Text PDF

Fibrolase is a non-hemorrhagic zinc metalloproteinase found in southern copperhead snake (Agkistrodon contortrix contortrix) venom that acts directly on fibrin clots and does not require plasminogen or any other blood-borne intermediate for activity. Chimeras of fibrolase with RGD peptides conferring antiplatelet activity have been synthesized covalently, but we describe a simpler, cheaper and less toxic method, using site-directed mutagensis. Fibrolase variants that constitute the arginine-glycine-aspartic acid (Arg-Gly-Asp, RGD) motif were constructed using site-directed mutagenesis.

View Article and Find Full Text PDF

Ancrod, a serine protease purified from the venom of Agkistrodon rhodostoma, is highly specific for fibrinogen. It causes anticoagulation by defibrinogenation and has been used as a therapeutic anticoagulant for the treatment of moderate to severe forms of peripheral arterial circulatory disorders in a variety of countries. The DNA of ancrod was amplified by recursive PCR with a yeast bias codon and cloned into the pGEM-T Easy vector.

View Article and Find Full Text PDF

Planarians exhibit an extraordinary ability to regenerate lost body parts which is attributed to an abundance of pluripotent somatic stem cells called neoblasts. In this article, we report a transcriptome sequence of a Planaria subspecies Dugesia japonica derived by high-throughput sequencing. In addition, we researched transcriptome changes during different periods of regeneration by using a tag-based digital gene expression (DGE) system.

View Article and Find Full Text PDF

Ahpfibrase was a new snake venom metalloproteinase (SVMP) which was cloned from Gloydius halys. The cDNA sequence with 1,891 base pairs encodes an open reading frame of 477 amino acids which includes a 17 amino acid signal peptide, plus a 171 amino acid segment of zymogen-like propeptide, a metalloproteinase domain of 200 amino acids, a spacer of 16 amino acids, and a disintegrin-like peptide of 73 amino acids. The metalloproteinase domain contained a conserved signature zinc-binding motif HEXXHXXGXXH in the catalytic region and a methionine-turn CIM.

View Article and Find Full Text PDF