We present a direct observation of the transformation of dense amorphous carbon clusters into diamond nanocrystalline under electron beam irradiation by in situ transmission electron microscopy, where the surrounding carbon matrix did not significantly change. Our findings provide clear and convincing evidence for the diamond nanocrystalline evolving from energetic amorphous carbon sites. Furthermore, graphitization of amorphous carbons usually demands a high temperature combined with high pressure.
View Article and Find Full Text PDFPhase transformation between carbon allotropes usually requires high pressures and high temperatures. Thus, the development of low-temperature phase transition approaches between carbon allotropes is highly desired. Herein, novel amorphous carbon nanocapsules are successfully synthesized by pulsed plasma glow discharge.
View Article and Find Full Text PDFBackground: MYH9-related disease is a rare autosomal dominant disorder characterized by the triad of giant platelet, thrombocytopenia and inclusion bodies in neutrophil. In recent years, much progress has been made in the investigation of its clinical feature and pathogenesis.
Methods: Clinical manifestations were analyzed in two Chinese MYH9-related disease families.