Publications by authors named "Samygina V"

Branched-chain amino acids (BCAAs) play an important role in the functioning of mammalian cells and the central nervous system. However, available genetically encoded indicators for BCAAs are based on Förster resonance energy transfer and have a limited dynamic range. We developed a single fluorescent protein-based sensor for BCAAs, called NeIle, which is composed of circularly permutated mNeonGreen protein inserted into the leucine-isoleucine-valine binding protein (LIVBP) from bacteria.

View Article and Find Full Text PDF

Unlabelled: During infection, the giant phiKZ phage forms a specialized structure at the center of the host cell called the phage nucleus. This structure is crucial for safeguarding viral DNA against bacterial nucleases and for segregating the transcriptional activities of late genes. Here, we describe a morphological entity, the early phage infection (EPI) vesicle, which appears to be responsible for earlier gene segregation at the beginning of the infection process.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV) causes a severe disease, tick-borne encephalitis (TBE), that has a substantial epidemiological importance for Northern Eurasia. Between 10,000 and 15,000 TBE cases are registered annually despite the availability of effective formaldehyde-inactivated full-virion vaccines due to insufficient vaccination coverage, as well as sporadic cases of vaccine breakthrough. The development of improved vaccines would benefit from the atomic resolution structure of the antigen.

View Article and Find Full Text PDF

The high brightness and photostability of the green fluorescent protein StayGold make it a particularly attractive probe for long-term live-cell imaging; however, its dimeric nature precludes its application as a fluorescent tag for some proteins. Here, we report the development and crystal structures of a monomeric variant of StayGold, named mBaoJin, which preserves the beneficial properties of its precursor, while serving as a tag for structural proteins and membranes. Systematic benchmarking of mBaoJin against popular green fluorescent proteins and other recently introduced monomeric and pseudomonomeric derivatives of StayGold established mBaoJin as a bright and photostable fluorescent protein, exhibiting rapid maturation and high pH/chemical stability.

View Article and Find Full Text PDF

X-ray imaging of virus particles at the European XFEL could eventually allow their complete structures to be solved, potentially approaching the resolution of other structural virology methods. To achieve this ambitious goal with today's technologies, about 1 ml of purified virus suspension containing at least 10 particles per millilitre is required. Such large amounts of concentrated suspension have never before been obtained for enveloped viruses.

View Article and Find Full Text PDF

The aim of this work was to compare the effect of reversible post-translational modifications, S-nitrosylation and S-glutathionylation, on the properties of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and to reveal the mechanism of the relationship between these modifications. Comparison of S-nitrosylated and S-glutathionylated GAPDH showed that both modifications inactivate the enzyme and change its spatial structure, decreasing the thermal stability of the protein and increasing its sensitivity to trypsin cleavage. Both modifications are reversible in the presence of dithiothreitol, however, in the presence of reduced glutathione and glutaredoxin 1, the reactivation of S-glutathionylated GAPDH is much slower (10% in 2 h) compared to S-nitrosylated GAPDH (60% in 10 min).

View Article and Find Full Text PDF

Chaperonins, a family of molecular chaperones, assist protein folding in all domains of life. They are classified into two groups: bacterial variants and those present in endosymbiotic organelles of eukaryotes belong to group I, while group II includes chaperonins from the cytosol of archaea and eukaryotes. Recently, chaperonins of a prospective new group were discovered in giant bacteriophages; however, structures have been determined for only two of them.

View Article and Find Full Text PDF

Red fluorescent proteins with a large Stokes' shift (LSSRFPs) are genetically encoded and efficiently excited by 488 nm light, allowing simultaneous dual-color one- and two-photon fluorescence imaging and fluorescence correlation spectroscopy in combination with green fluorescent proteins FPs. Recently, based on the conventional bright mScarlet RFP, we developed the LSSRFP LSSmScarlet. LSSmScarlet is characterized by two pKa values at pH values of 1.

View Article and Find Full Text PDF

The resistance of bacteria to β-lactam antibiotics is primarily caused by the production of β-lactamases. Here, novel crystal structures of the native β-lactamase TEM-171 and two complexes with the widely used inhibitor tazobactam are presented, alongside complementary data from UV spectroscopy and fluorescence quenching. The six chemically identical β-lactamase molecules in the crystallographic asymmetric unit displayed different degrees of disorder.

View Article and Find Full Text PDF

Cobra cytotoxins (CTs) belong to the three-fingered protein family and possess membrane activity. Here, we studied cytotoxin 13 from cobra venom (CT13Nn). For the first time, a spatial model of CT13Nn with both "water" and "membrane" conformations of the central loop (loop-2) were determined by X-ray crystallography.

View Article and Find Full Text PDF

The glycolipid transfer protein (GLTP) fold defines a superfamily of eukaryotic proteins that selectively transport sphingolipids (SLs) between membranes. However, the mechanisms determining the protein selectivity for specific glycosphingolipids (GSLs) are unclear. Here, we report the crystal structure of the GLTP homology (GLTPH) domain of human 4-phosphate adaptor protein 2 (FAPP2) bound with -oleoyl-galactosylceramide.

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF) is a key proinflammatory cytokine. Inhibitors of tautomerase activity of MIF are perspective antiinflammatory compounds. Ceruloplasmin, the copper-containing ferroxidase of blood plasma, is a noncompetitive inhibitor of tautomerase activity of MIF in the reaction with p-hydroxyphenylpyruvate.

View Article and Find Full Text PDF

Ceruloplasmin (Cp) is a copper-containing multifunctional oxidase of plasma, an antioxidant, an acute-phase protein and a free radical scavenger. The structural organization of Cp causes its sensitivity to proteolysis and ROS (reactive oxygen species), which can alter some of the important Cp functions. Elucidation of the orthorhombic crystal structure of rat Cp at 2.

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, is a target for pharmacological treatment of sepsis and malignant tumors. Inhibition of tautomerase activity of MIF in reaction with p-hydroxyphenylpyruvate (HPP) was observed in the presence of ceruloplasmin (CP), a copper-containing plasma protein. Binding labile copper ions to CP (CP+Cu(II)) is a prerequisite for MIF inhibiting.

View Article and Find Full Text PDF

Glycolipid transfer proteins (GLTPs) originally were identified as small (~24 kDa), soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. GLTPs and related homologs now are known to adopt a unique, helically dominated, two-layer 'sandwich' architecture defined as the GLTP-fold that provides the structural underpinning for the eukaryotic GLTP superfamily. Recent advances now provide exquisite insights into structural features responsible for lipid headgroup selectivity as well as the adaptability of the hydrophobic compartment for accommodating hydrocarbon chains of differing length and unsaturation.

View Article and Find Full Text PDF

Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are involved in the development of halogenative stress during inflammation. We previously described a complex between MPO and ceruloplasmin (CP). Considering the high structural homology between MPO and EPO, we studied the latter's interaction with CP and checked whether EPO becomes inhibited in a complex with CP.

View Article and Find Full Text PDF

The crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding module (CBM) from laminarinase Lic16A of the hyperthermophilic anaerobic bacterium Clostridium thermocellum (ctCBM54) are reported. Recombinant ctCBM54 was prepared using an Escherichia coli/pQE30 overexpression system and was crystallized by the hanging-drop vapour-diffusion method. X-ray diffraction data were collected to 2.

View Article and Find Full Text PDF

Copper-containing plasma protein ceruloplasmin (Cp) forms a complex with lactoferrin (Lf), an iron-binding protein, and with the heme-containing myeloperoxidase (Mpo). In case of inflammation, Lf and Mpo are secreted from neutrophil granules. Among the plasma proteins, Cp seems to be the preferential partner of Lf and Mpo.

View Article and Find Full Text PDF

Copper-containing ferroxidase ceruloplasmin (Cp) forms binary and ternary complexes with cationic proteins lactoferrin (Lf) and myeloperoxidase (Mpo) during inflammation. We present an X-ray crystal structure of a 2Cp-Mpo complex at 4.7 Å resolution.

View Article and Find Full Text PDF

Human glycolipid transfer protein (hsGLTP) forms the prototypical GLTP fold and is characterized by a broad transfer selectivity for glycosphingolipids (GSLs). The GLTP mutation D48V near the `portal entrance' of the glycolipid binding site has recently been shown to enhance selectivity for sulfatides (SFs) containing a long acyl chain. Here, nine novel crystal structures of hsGLTP and the SF-selective mutant complexed with short-acyl-chain monoSF and diSF in different crystal forms are reported in order to elucidate the potential functional roles of lipid-mediated homodimerization.

View Article and Find Full Text PDF

Human glycolipid transfer protein (GLTP) fold represents a novel structural motif for lipid binding/transfer and reversible membrane translocation. GLTPs transfer glycosphingolipids (GSLs) that are key regulators of cell growth, division, surface adhesion, and neurodevelopment. Herein, we report structure-guided engineering of the lipid binding features of GLTP.

View Article and Find Full Text PDF

In this paper, kinetic properties of a soluble inorganic pyrophosphatase of family I from Vibrio cholerae (V-PPase), intestinal pathogen and causative agent of human cholera, are characterized in detail, and the crystal structure of a metal-free enzyme is reported. Hydrolytic activity of V-PPase has been studied as a function of pH, concentration of metal cofactors (Mg2+ or Mn2+), and ionic strength. It has been found that, despite the high conservation of amino acid sequences for the known bacterial PPases of family I, V-PPase differs from the other enzymes of the same family in a number of parameters.

View Article and Find Full Text PDF

Ceruloplasmin (CP), the multicopper oxidase of plasma, interacts with myeloperoxidase (MPO), an enzyme of leukocytes, and inhibits its peroxidase and chlorinating activity. Studies on the enzymatic properties shows that CP behaves as a competitive inhibitor impeding the binding of aromatic substrates to the active centre of MPO. The contact between CP and MPO probably entails conformational changes close to the p-phenylenediamine binding site in CP, which explains the observed activation by MPO of the substrate's oxidation.

View Article and Find Full Text PDF