Publications by authors named "Samy M Shaban"

Blood lactate concentration is an established circulating biomarker for measuring muscle acidity and can be evaluated for monitoring endurance, training routines, or athletic performance. Sweat is an alternative biofluid that may serve similar purposes and offers the advantage of noninvasive collection and continuous monitoring. The relationship between blood lactate and dynamic sweat biochemistry for wearable engineering applications in physiological fitness remains poorly defined.

View Article and Find Full Text PDF

Alkaline phosphatase (ALP) and interleukin-1beta (IL-1β) are crucial salivary biomarkers for the diagnosis of periodontal disease that harms the periodontal tissue along with tooth loss. However, there has been no way of sensitive and portable detection of both biomarkers in saliva with multivariate signal readout. In this work, we design the multicolorimetric ALP and IL-1β sensing platform based on geometrical transformation of silver nanoplate transducer.

View Article and Find Full Text PDF

Alkaline phosphatase (ALP) is one of the most versatile biomarkers for early detection of several diseases, such as oral carcinomas and periodontitis; therefore, great efforts have been dedicated for developing an ALP biosensor. Multicolor detection of ALP in saliva is ideal for a point-of-care diagnosis; however, this approach is very challenging since spectral responses over wavelengths of several tens of nanometers have thus far remained difficult to achieve. In this work, a colorimetric biosensor for ALP assay has been developed based on ALP affinity to dephosphorylate glucose phosphate into glucose, which has the affinity to deposit Ag nanoshells onto Au nanobipyramids with a multicolor response.

View Article and Find Full Text PDF

Smartphone-assisted point-of-care (POC) bioassay has brought a giant leap in personal healthcare system and environmental monitoring advancements. In this study, we developed a rapid and reliable colorimetric urea biosensor assisted by a smartphone. We employed hydrolysis of urea into NH by urease, which activates the reduction power of tannic acid, to generate silver nanoparticles for a dramatic colorimetric response.

View Article and Find Full Text PDF

Alkaline phosphatase (ALP) is an enzyme that catalyzes the dephosphorylation of proteins, nucleic acids, and biomolecules. It is a potential biomarker for diverse diseases such as breast cancer, osteopenia, and hepatobiliary. Herein, we developed a colorimetric sensor for the ALP assay based on its enzymatic activity to dephosphorylate the p-aminophenol phosphate (pAPP) into pAP.

View Article and Find Full Text PDF

Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors.

View Article and Find Full Text PDF

A colorimetric sensor for the detection of citrate ions is reported here using dual-surfactant-capped Ag nanoparticles (dual-AgNP sensor). A mixture of cetyl trimethyl ammonium bromide and a newly prepared gemini nonionic (GFEO) surfactant was used as a capping agent to synthesize dual-surfactant-capped Ag NPs for selective and sensitive citrate detection. The GFEO surfactant was designed with a specific chemical structure to provide strong binding with citrate for selective and sensitive detection.

View Article and Find Full Text PDF

Three anionic chitosan surfactant with different hydrophobic tails labeled Chitosan-R8, Chitosan-R12 and Chitosan-R16 were prepared and their surface behavior in aqueous solution was determined by surface tension measurements at three different temperatures 20, 40 and 60 °C. The affinity of the synthesized anionic chitosan surfactant to form micelle enhanced with increasing the hydrophobic chain length as well as raising the solution temperature up to 60 °C. The anionic chitosan surfactant showed a great influence as capping agent for the in-situ preparation of silver nanoparticles (AgNPs) based on photochemical reduction method using sunlight as reducing agent.

View Article and Find Full Text PDF

Three novels amide Gemini cationic surfactants with various alkyl chains and their silver nanohybrid with silver nanoparticles were synthesized and a confirmation study for surfactant and their nanoparticles formation has been established using IR, HNMR, TEM and UV-Vis spectroscopy. The surface-active properties of these surfactants and their nanoform were investigated through surface tension and electrical conductivity measurements and a comparative study has been established. The thermodynamic parameters of micellization and adsorption were assessed at temperatures range from 25 to 65°C.

View Article and Find Full Text PDF