A new method to quantitatively analyze heterogeneous distributions of local proton densities around paramagnetic centers in unstructured and weakly structured biomacromolecules and soft matter is introduced, and its feasibility is demonstrated on aqueous solutions of stochastically spin-labeled polysaccharides. This method is based on the pulse EPR experiment ih-RIDME (intermolecular hyperfine relaxation-induced dipolar modulation enhancement). Global analysis of a series of RIDME traces allows for a mathematically stable transformation of the time-domain data to the distribution of local proton concentrations.
View Article and Find Full Text PDFBioresour Technol
December 2023
Microalgae are gaining interest as food ingredient. Assessments of functional and nutritional properties are necessary to forward their implementation. In this study, protein content and composition of eight commercially available microalgae biomasses were determined and compared to conventional food proteins.
View Article and Find Full Text PDFOptimizing human diet by including dietary fibers would be more efficient when the fibers' chain interactions with other molecules are understood in depth. Thereby, it is important to develop methods for characterizing the fiber chain to be able to monitor its structural alterations upon intermolecular interactions. Here, we demonstrate the utility of the electron paramagnetic resonance (EPR) spectroscopy, complemented by simulations in probing the atomistic details of the chain conformations for spin-labeled fibers.
View Article and Find Full Text PDFThe interactions between dietary fibers (DFs) and small molecules are of great interest to food chemistry and nutrition science. However, the corresponding interaction mechanisms and structural rearrangements of DFs at the molecular level are still opaque due to the usually weak binding and the lack of appropriate techniques to determine details of conformational distributions in such weakly organized systems. By combining our previously established methodology on stochastic spin-labelling of DFs with the appropriately revised set of pulse electron paramagnetic resonance techniques, we present here a toolkit to determine the interactions between DFs and small molecules, using barley β-glucan as an example for neutral DF and a selection of food dye molecules as examples for small molecules.
View Article and Find Full Text PDFUse of spin labels to study structures of polymers has been widely spread in polymer science. However, for the studies of neutral water-soluble dietary fibers (DFs), labelling efficiencies in past studies have only been sufficient for application of continuous wave electron paramagnetic resonance spectroscopy (CW-EPR), but still insufficient for some advanced methods such as pulse EPR. Thus, in this paper, two spin labelling strategies, namely, site-selective mono-spin-labelling and stochastic multi-spin-labelling, were examined on linear cereal β-glucan, as well as linearly branched arabinoxylan and galactomannan.
View Article and Find Full Text PDFFor cereal-based foods rich in dietary fibers, iron bioavailability is known to be poor. For native cereal β-glucan extracts, literature has demonstrated that the main factor impacting the bioavailability is phytic acid, which is often found in association with dietary fibers. During food processing, β-glucan can undergo modifications which could potentially affect the equilibrium between phytic acid, fiber, and iron.
View Article and Find Full Text PDFThe interaction between small molecules and neutral soluble dietary fiber is one of the proposed mechanisms determining the bioavailability of these components in the small intestine. However, the weak nature of these interactions makes it difficult to find an analytical method sensitive enough to detect them. Here, we probed the molecular interaction between galactomannan, arabinoxylan, and β-glucan with gallic acid, cinnamic acid, acetylsalicylic acid, and acetaminophen, using advanced analytical methods, namely isothermal titration calorimetry (ITC) and in the form of gold-nanoparticles, transmission electron microscopy (TEM).
View Article and Find Full Text PDFEndolysins are bacteriophage-encoded peptidoglycan hydrolases targeting the cell wall of host bacteria their cell wall-binding domains (CBDs). The molecular basis for selective recognition of surface carbohydrate ligands by CBDs remains elusive. Here, we describe, in atomic detail, the interaction between the phage endolysin domain CBD500 and its cell wall teichoic acid (WTA) ligands.
View Article and Find Full Text PDFListeria ivanovii () is an intracellular Gram-positive pathogen that primarily infects ruminants but also occasionally causes enteric infections in humans. Albeit rare, this bacterium possesses the capacity to cross the intestinal epithelium of humans, similar to its more frequently pathogenic cousin, Listeria monocytogenes (). Recent studies in have shown that specific glycosyl modifications on the cell wall-associated glycopolymers (termed wall teichoic acid [WTA]) of are responsible for bacteriophage adsorption and retention of the major virulence factor internalin B (InlB).
View Article and Find Full Text PDFThe manifold array of saccharide linkages leads to a great variety of polysaccharide architectures, comprising three conformations in aqueous solution: compact sphere, random coil, and rigid rod. This conformational variation limits the suitability of the commonly applied molecular weight cut-off (MWCO) as selection criteria for polysaccharide ultrafiltration membranes, as it is based on globular marker proteins with narrow M and hydrodynamic volume relation. Here we show the effect of conformation on ultrafiltration performance using randomly coiled pullulan and rigid rod-like scleroglucan as model polysaccharides for membrane rejection and molecular weight distribution.
View Article and Find Full Text PDFOwing to the strong structure-function relationship of polysaccharides, the targeted modification of polysaccharides is attracting widespread interest in various fields, such as food industry, nutritional science, and biomedical research. Apart from intended functionalization, polysaccharide degradation mediated by hydroxyl radicals (HO˙) occurs in various industrial processes such as food processing. In particular, the oxidative degradation of feruloylated arabinoxylan (AX), a linearly-branched polysaccharide in cereals, causes chain scissions, and introduces new functional groups in the fiber, which can potentially modify the physicochemical properties and the functionalities of AX.
View Article and Find Full Text PDFWith an increasing worldwide demand for animal protein, insects are becoming a promising sustainable option for meat protein replacement. However, reported protein contents of insects are often overestimated when calculated as "crude protein" = 6.25 × nitrogen content (), compared to true protein contents quantified from the sum of amino acid (AA) residues.
View Article and Find Full Text PDFThe effect of partial acid hydrolysis on the physical and chemical properties of galactomannan, arabinoxylan, and xyloglucan was investigated. Polysaccharides were treated at 50 °C with hydrochloric acid for 3-48 h. Portions of isopropanol (-PrOH) were added sequentially to the hydrolyzates, resulting in fractions that were collected by centrifugation.
View Article and Find Full Text PDFListeria monocytogenes is a Gram-positive, intracellular pathogen harboring the surface-associated virulence factor InlB, which enables entry into certain host cells. Structurally diverse wall teichoic acids (WTAs), which can also be differentially glycosylated, determine the antigenic basis of the various Listeria serovars. WTAs have many physiological functions; they can serve as receptors for bacteriophages, and provide a substrate for binding of surface proteins such as InlB.
View Article and Find Full Text PDFFoods rich in cereal β-glucan are efficient dietary tools to help reduce serum cholesterol levels and hence the risk of cardiovascular diseases. However, β-glucan undergoes various reactions during food processing, which alter its viscous properties and interactions with components of the gastrointestinal tract. It has been proposed in the literature that oxidation and partial hydrolysis increase β-glucan's bile acid-binding activity, and therefore its effectiveness in lowering cholesterol.
View Article and Find Full Text PDFWater contamination by organic pollutants is ubiquitous and hence a global concern due to detrimental effects on the environment and human health. Here, it is demonstrated that amyloid fibrils aerogels are ideal adsorbers for removing organic pollutants from water. To this end, amyloid fibrils prepared from β-lactoglobulin, the major constituent of milk whey protein, are used as building blocks for the fabrication of the aerogels.
View Article and Find Full Text PDFA key challenge for black soldier fly larvae (BSFL) treatment is its variable reliability and efficiency when applied to different biowastes. Similar to other biowaste treatment technologies, co-conversion could compensate for variability in the composition of biowastes. Using detailed nutrient analyses, this study assessed whether mixing biowastes to similar protein and non-fibre carbohydrate (NFC) contents increased the performance and reduced the variability of BSFL treatment in comparison to the treatment of individual wastes.
View Article and Find Full Text PDFThe intracellular pathogen Listeria monocytogenes is distinguished by its ability to invade and replicate within mammalian cells. Remarkably, of the 15 serovars within the genus, strains belonging to serovar 4b cause the majority of listeriosis clinical cases and outbreaks. The Listeria O-antigens are defined by subtle structural differences amongst the peptidoglycan-associated wall-teichoic acids (WTAs), and their specific glycosylation patterns.
View Article and Find Full Text PDFDietary plant foods are characterized by a vast molecular diversity of glycosylated sterols (SG) that differ in the structure of the steryl backbone. The identification of these polar steryl conjugates represents a major challenge as they are structurally highly similar, and commercial standards are limited to a few naturally abundant species. Spectral databases do not yet contain MS/MS spectra of these sterol conjugates obtained by electrospray ionization (ESI), which would facilitate their reliable identification.
View Article and Find Full Text PDFThe oxidation of cereal (1→3,1→4)-β-D-glucan can influence the health promoting and technological properties of this linear, soluble homopolysaccharide by introduction of new functional groups or chain scission. Apart from deliberate oxidative modifications, oxidation of β-glucan can already occur during processing and storage, which is mediated by hydroxyl radicals (HO) formed by the Fenton reaction. We present four complementary sample preparation strategies to investigate oat and barley β-glucan oxidation products by hydrophilic interaction ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), employing selective enzymatic digestion, graphitized carbon solid phase extraction (SPE), and functional group labeling techniques.
View Article and Find Full Text PDFWall teichoic acids (WTAs) are the most abundant glycopolymers found on the cell wall of many Gram-positive bacteria, whose diverse surface structures play key roles in multiple biological processes. Despite recent technological advances in glycan analysis, structural elucidation of WTAs remains challenging due to their complex nature. Here, we employed a combination of ultra-performance liquid chromatography-coupled electrospray ionization tandem-MS/MS and NMR to determine the structural complexity of WTAs from species.
View Article and Find Full Text PDFPolysaccharide degradation mediated by hydroxyl radicals (HO˙) or lytic monooxygenases (LPMOs) is relevant in various biological and industrial processes. Thereby, the Fenton-induced (HO/Fe) oxidation of mixed-linkage (1→3,1→4)-β-d-glucan (BG), a cereal dietary fibre with several well-established health promoting properties, shows potential for modulating BG functionality. The precise identification of oxidation products, however, is impeded by their diversity due to the indiscriminate nature of HO˙, the large molecular weight, and the corresponding low frequency of discrete alterations along the polymer chain.
View Article and Find Full Text PDF