Publications by authors named "Samy A Madbouly"

Biodegradable and antimicrobial waterborne polyurethane dispersions (PUDs) and their casted solid films have recently emerged as important alternatives to their solvent-based and non-biodegradable counterparts for various applications due to their versatility, health, and environmental friendliness. The nanoscale morphology of the PUDs, dispersion stability, and the thermomechanical properties of the solid films obtained from the solvent cast process are strongly dependent on several important parameters, such as the preparation method, polyols, diisocyanates, solid content, chain extension, and temperature. The biodegradability, biocompatibility, antimicrobial properties and biomedical applications can be tailored based on the nature of the polyols, polarity, as well as structure and concentration of the internal surfactants (anionic or cationic).

View Article and Find Full Text PDF

Nanoscale semi-interpenetrating polymer networks of bio-based poly(ε-caprolactone) (PCL) and polymerized tung oil have been prepared via in situ cationic polymerization and compatibilization in a homogeneous solution. This novel blending technique produced a nanoscale morphology of poly(ε-caprolactone) with average particle sizes as small as 100 nm dispersed in a cross-linked tung oil matrix for 20 and 30 wt % PCL blend compositions. In addition, the exothermic cationic polymerization of tung oil in the presence of the PCL homogeneous solution created a microporous morphology with open three-dimensional interconnected cluster structures.

View Article and Find Full Text PDF

Molecularly well-defined tackifiers with up to 100 % bio-content were prepared from isosorbide and various cyclic anhydrides. These tackifiers are tacky over a broad temperature range and exhibit high maximum tack (ca. 2000 kPa).

View Article and Find Full Text PDF

In this study, a series of biobased polyols were prepared from olive, canola, grape seed, linseed, and castor oil using a novel, solvent/catalyst-free synthetic method. The biobased triglyceride oils were first oxidized into epoxidized vegetable oils with formic acid and hydrogen peroxide, followed by ring-opening reaction with castor oil fatty acid. The molecular structures of the polyols and the resulting polyurethane were characterized.

View Article and Find Full Text PDF