Publications by authors named "Samuelson P"

Unlabelled: Purpose: Chemotherapy-induced peripheral neuropathy (CIPN) with associated weakness, areflexia, neuropathic pain, and sensory loss, is a common occurrence in children treated for cancer. However, accurate, quantifiable descriptions of gait deviations due to CIPN are lacking. This scoping review explores common gait abnormalities in children with CIPN.

View Article and Find Full Text PDF

Ongoing lawsuits could affect everyone who uses generative AI.

View Article and Find Full Text PDF

Objective: To describe the genomic analysis and epidemiologic response related to a slow and prolonged methicillin-resistant (MRSA) outbreak.

Design: Prospective observational study.

Setting: Neonatal intensive care unit (NICU).

View Article and Find Full Text PDF

Background & Aims: Golexanolone is a novel small molecule GABA-A receptor-modulating steroid antagonist under development for the treatment of cognitive and vigilance disorders caused by allosteric over-activation of GABA-A receptors by neurosteroids. It restored spatial learning and motor coordination in animal models of hepatic encephalopathy (HE) and mitigated the effects of intravenous allopregnanolone in healthy adults in a dose-dependent fashion. Herein, we report data on the safety, pharmacokinetics (PK) and efficacy of golexanolone in adult patients with cirrhosis.

View Article and Find Full Text PDF
Article Synopsis
  • Salmonella enterica serovar Enteritidis (SE) is a major cause of food-borne disease, and previous attempts to use E. coli as a vaccine vehicle for its flagellar protein (H:gm) faced challenges due to the protein being cleaved.
  • Researchers created a truncated version of H:gm (H:gmd) that could be expressed successfully, along with a fusion protein with the fimbrial protein SefA to improve its display and immune response.
  • The study found that both H:gmd and the fusion protein were effectively displayed on E. coli's surface and could trigger a pro-inflammatory response in intestinal cells, marking progress towards a potential vaccine against Salmonella infections.
View Article and Find Full Text PDF

In implementing a hospital mandatory influenza vaccination policy, we developed an automated, real-time tracking and reminder system. Of 6,957 policy-covered individuals automatically identified, automated reminders left only 5 requiring counseling. This decreased Occupational Health workload in contacting noncompliant individuals and hosting vaccination events while simultaneously facilitating a 96% vaccination rate.

View Article and Find Full Text PDF

Proteases are involved in many biological processes and have become important tools in biomedical research and industry. Technologies for engineering and characterization of, for example, proteolytic activity and specificity are essential in protease research. Here, we present a novel method for assessment of site-specific proteolysis.

View Article and Find Full Text PDF

Background: The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag.

View Article and Find Full Text PDF

Background: Assessing the relative success of serial strategies for increasing healthcare personnel (HCP) influenza vaccination rates is important to guide hospital policies to increase vaccine uptake.

Objective: To evaluate serial campaigns that include a mandatory HCP vaccination policy and to describe HCP attitudes toward vaccination and reasons for declination.

Design: Retrospective cohort study.

View Article and Find Full Text PDF

Site-specific proteolysis of proteins plays an important role in many cellular functions and is often key to the virulence of infectious organisms. Efficient methods for characterization of proteases and their substrates will therefore help us understand these fundamental processes and thereby hopefully point towards new therapeutic strategies. Here, a novel whole-cell in vivo method was used to investigate the substrate preference of the sequence specific tobacco etch virus protease (TEVp).

View Article and Find Full Text PDF

We have developed a sensitive and highly efficient whole-cell methodology for quantitative analysis and screening of protease activity in vivo. The method is based on the ability of a genetically encoded protease to rescue a coexpressed short-lived fluorescent substrate reporter from cytoplasmic degradation and thereby confer increased whole-cell fluorescence in proportion to the protease's apparent activity in the Escherichia coli cytoplasm. We demonstrated that this system can reveal differences in the efficiency with which tobacco etch virus (TEV) protease processes different substrate peptides.

View Article and Find Full Text PDF

Efficient enrichment of staphylococcal cells displaying specific heterologous affinity ligands on their cell surfaces was demonstrated by using fluorescence-activated cell sorting. Using bacterial surface display of peptide or protein libraries for the purpose of combinatorial protein engineering has previously been investigated by using gram-negative bacteria. Here, the potential for using a gram-positive bacterium was evaluated by employing the well-established surface expression system for Staphylococcus carnosus.

View Article and Find Full Text PDF

Novel surface proteins can be introduced onto bacterial cell surfaces by recombinant means. Here, we describe various applications of two such display systems for the food-grade bacteria Staphylococcus carnosus and Staphylococcus xylosus, respectively. The achievements in the use of such staphylococci as live bacterial vaccine delivery vehicles will be described.

View Article and Find Full Text PDF

General expression vectors, designed for intracellular expression or secretion of recombinant proteins in the non-pathogenic Staphylococcus carnosus, were constructed. Both vector systems encode two different affinity tags, an upstream albumin binding protein and a downstream hexahistidyl peptide, and are furnished with cleavage sites for two site-specific proteases for optional affinity tag removal. To evaluate the novel vectors, the gene encoding the outer membrane protein A (OmpA) of Klebsiella pneumoniae was introduced into the vectors.

View Article and Find Full Text PDF

Display of heterologous proteins on the surface of microorganisms, enabled by means of recombinant DNA technology, has become an increasingly used strategy in various applications in microbiology, biotechnology and vaccinology. Gram-negative, Gram-positive bacteria, viruses and phages are all being investigated in such applications. This review will focus on the bacterial display systems and applications.

View Article and Find Full Text PDF

The twin arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates translocation of essentially folded proteins across the cytoplasmic membrane. The detailed understanding of the mechanism of protein targeting to the Tat pathway has been hampered by the lack of screening or selection systems suitable for genetic analysis. We report here the development of a highly quantitative protein reporter for genetic analysis of Tat-specific export.

View Article and Find Full Text PDF

A potentially pathogenic expansion of T cells expressing T cell receptor (TCR) Vbeta5.2/5.3 has been demonstrated in patients with multiple sclerosis (MS).

View Article and Find Full Text PDF

Scientists who study encryption or computer security or otherwise reverse engineer technical measures, who make tools enabling them to do this work, and who report the results of their research face new risks of legal liability because of recently adopted rules prohibiting the circumvention of technical measures and manufacture or distribution of circumvention tools. Because all data in digital form can be technically protected, the impact of these rules goes far beyond encryption and computer security research. The scientific community must recognize the harms these rules pose and provide guidance about how to improve the anticircumvention rules.

View Article and Find Full Text PDF

Heterologous surface display on Gram-positive bacteria was first described almost a decade ago and has since then developed into an active research area. Gram-positive bacterial surface display has today found a range of applications, in immunology, microbiology and biotechnology. Live bacterial vaccine delivery vehicles are being developed through the surface display of selected foreign antigens on the bacterial surfaces.

View Article and Find Full Text PDF

Novel surface proteins can be introduced onto the bacterial cell surface by recombinant means. Here, we describe the development of such display systems for two food-grade bacteria, Staphylococcus carnosus and Staphylococcus xylosus, and present how such engineered bacteria can be used in different applications. A study will be described in which such staphylococci were employed as vaccine delivery vehicles to elicit protective antibody responses to respiratory syncytial virus (RSV).

View Article and Find Full Text PDF

The immobilization of recombinant staphylococci onto cellulose fibers through surface display of a fungal cellulose-binding domain (CBD) was investigated. Chimeric proteins containing the CBD from Trichoderma reesei cellulase Cel6A were found to be correctly targeted to the cell wall of Staphylococcus carnosus cells, since full-length proteins could be extracted and affinity-purified. Furthermore, surface accessibility of the CBD was verified using a monoclonal antibody and functionality in terms of cellulose-binding was demonstrated in two different assays in which recombinant staphylococci were found to efficiently bind to cotton fibers.

View Article and Find Full Text PDF

A live bacterial vaccine-delivery system based on the food-grade bacterium Staphylococcus carnosus was used for delivery of peptides from the G glycoprotein of human respiratory syncytial virus, subtype A (RSV-A). Three peptides, corresponding to the G protein amino acids, 144-159 (denoted G5), 190-203 (G9) and 171-188 (G4 S), the latter with four cysteine residues substituted for serines, were expressed by recombinant means as surface-exposed on three different bacteria, and their surface accessibility on the bacteria was verified by fluorescence-activated cell sorting (FACS). Intranasal immunization of mice with the live recombinant staphylococci elicited significant anti-peptide as well as anti-virus serum IgG responses of balanced IgG1/IgG2a isotype profiles, and upon viral challenge with 10(5) tissue culture infectious doses(50) (TCID(50)), lung protection was demonstrated for approximately half of the mice in the G9 and G4 S immunization groups.

View Article and Find Full Text PDF

Recombinant Staphylococcus xylosus and Staphylococcus carnosus strains were generated with surface-exposed chimeric proteins containing polyhistidyl peptides designed for binding to divalent metal ions. Surface accessibility of the chimeric surface proteins was demonstrated and the chimeric surface proteins were found to be functional in terms of metal binding, since the recombinant staphylococcal cells were shown to have gained Ni(2+)- and Cd(2+)-binding capacity, suggesting that such bacteria could find use in bioremediation of heavy metals. This is, to our knowledge, the first time that recombinant, surface-exposed metal-binding peptides have been expressed on gram-positive bacteria.

View Article and Find Full Text PDF