Publications by authors named "Samuele Giberti"

Aromatic amino acid homeostasis was investigated in cell suspension cultures of and was related to the activity of the first enzyme in aromatic biosynthesis, 3-deoxy-D--heptulosonate-7-phosphate (DAHP) synthase. An inverse relationship was found between the intracellular content of free phenylalanine, tyrosine and tryptophan and enzyme specific activity levels, suggesting the occurrence of end-product control mechanisms. Two DAHP synthase isogenes are present in wild tobacco that showed a different expression pattern during the culture growth cycle.

View Article and Find Full Text PDF

Background: In peach fruit, carotenoid accumulation in the mesocarp causes the difference between yellow and white genotypes. The latter are generally characterized by a peculiar and more intense aroma, because of higher release of volatiles deriving from dioxygenase-catalysed breakdown of the tetraterpene skeleton. The rate of carotenoid oxidation was investigated in peach (Prunus persica L.

View Article and Find Full Text PDF

Racemic 1-hydroxy-3-butenyl-, 3-chloro-1-hydroxypropyl-, and 3-bromo-1-hydroxypropylphosphonate and the corresponding ()-enantiomers obtained by lipase-catalyzed resolution of the respective racemic chloroacetates were subjected to functional group manipulations. These comprised ozonolysis, Mitsunobu reactions with hydrazoic acid and -hydroxyphthalimide, alkylation of hydrazine derivative, removal of phthaloyl group followed by intramolecular substitution, and global deprotection to deliver the racemates and ()-enantiomers (ee 92-99% by chiral high-performance liquid chromatography) of pyrrolidin-2-yl-, oxazolidin-3-yl-, oxazolidin-5-yl-, pyrazolidin-3-yl-, and 1,2-oxazinan-3-ylphosphonic acids. These phosphonic acids were evaluated as analogues of proline and proline analogues for the ability to inhibit γ-glutamyl kinase, δ-pyrroline-5-carboxylate synthetase, and δ-pyrroline-5-carboxylate reductase.

View Article and Find Full Text PDF

Abenquines are natural N-acetylaminobenzoquinones bearing amino acid residues, which act as weak inhibitors of the photosynthetic electron transport chain. Aiming to exploit the abenquine scaffold as a model for the synthesis of new herbicides targeting photosynthesis, 14 new analogues were prepared by replacing the amino acid residue with benzylamines and the acetyl with different acyl groups. The synthesis was accomplished in three steps with a 68-95% overall yield from readily available 2,5-dimethoxyaniline, acyl chlorides, and benzyl amines.

View Article and Find Full Text PDF

Although quinones present a large array of biological activities, a few studies on the herbicidal potential of 2,5-bis(alkyl/arylamino)-1,4-benzoquinones have been reported to date. In this work, starting from benzoquinone, 13 2,5-bis(alkyl/arylamino)-1,4-benzoquinones were prepared in 46 - 93% yield. The products were fully characterized by spectroscopic analyses and their phytotoxicity against Cucumis sativus and Sorghum bicolor seedlings was investigated.

View Article and Find Full Text PDF

Background: Dual-target inhibitors may contribute to the management of herbicide-resistant weeds and avoid or delay the selection of resistant biotypes. Some aminobisphosphonates inhibit the activity of both glutamine synthetase and δ -pyrroline-5-carboxylate (P5C) reductase in vitro, but the relevance of the latter in vivo has yet to be proven. This study aimed at demonstrating that these compounds can also block proline synthesis in planta.

View Article and Find Full Text PDF

Δ(1)-pyrroline-5-carboxylate (P5C) reductase (P5CR) catalyses the final step of proline synthesis in plants. In Arabidopsis thaliana, protein levels are correlated neither to the corresponding mRNA copy numbers, nor to intracellular proline concentrations. The occurrence of post-translational regulatory mechanisms has therefore been hypothesized, but never assessed.

View Article and Find Full Text PDF

Alternariol and monomethylalternariol are natural phytotoxins produced by some fungal strains, such as Nimbya and Alternaria. These substances confer virulence to phytopathogens, yet no information is available concerning their mode of action. Here we show that in the micromolar range alternariol 9-methyl ether is able to inhibit the electron transport chain (IC50 = 29.

View Article and Find Full Text PDF

Analogues of previously studied phenyl-substituted aminomethylene-bisphosphonic acids were synthesized and evaluated as inhibitors of Arabidopsis thaliana δ(1)-pyrroline-5-carboxylate reductase. With the aim of improving their effectiveness, two main modifications were introduced into the inhibitory scaffold: the aminomethylenebisphosphonic moiety was replaced with a hydroxymethylenebisphosphonic group, and the length of the molecule was increased by replacing the methylene linker with an ethylidene chain. In addition, chlorine atoms in the phenyl ring were replaced with various other substituents.

View Article and Find Full Text PDF

A series of isobenzofuran-1(3H)-ones (phthalides), analogues of the naturally occurring phytotoxin cryphonectric acid, were designed, synthesized, and fully characterized by NMR, IR, and MS analyses. Their synthesis was achieved via condensation, aromatization, and acetylation reactions. The measurement of the electron transport chain in spinach chloroplasts showed that several derivatives are capable of interfering with the photosynthetic apparatus.

View Article and Find Full Text PDF

As a consequence of increasing industrial applications, thousand tons of polyphosphonates are introduced every year into the environment. The inherent stability of the C-P bond results in a prolonged half-life. Moreover, low uptake rates limit further their microbial metabolization.

View Article and Find Full Text PDF

Suspension cultured cells of a blast-resistant rice genotype (Oryza sativa L. cv. Gigante Vercelli) were treated with cell wall hydrolysates prepared from the fungal pathogen Magnaporthe oryzae.

View Article and Find Full Text PDF

Background: Aiming at the rational design of new herbicides, the availability of the three-dimensional structure of the target enzyme greatly enhances the optimisation of lead compounds and the design of derivatives with increased activity. Among the most widely exploited herbicide targets is glutamine synthetase. Recently, the structure of a cytosolic form of the maize enzyme has been described, making it possible to verify whether steric, electronic and hydrophobic features of a compound are in agreement with inhibitor-protein interaction geometry.

View Article and Find Full Text PDF

A series of N-substituted derivatives of aminomethylenebisphosphonic acid were evaluated as potential inhibitors of delta1-pyrroline-5-carboxylate reductase (EC 1.5.1.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: