Publications by authors named "Samuele Colonna"

Different types of graphene-related materials (GRM) are industrially available and have been exploited for thermal conductivity enhancement in polymers. These include materials with very different features, in terms of thickness, lateral size and composition, especially concerning the oxygen to carbon ratio and the possible presence of surface functionalization. Due to the variability of GRM properties, the differences in polymer nanocomposites preparation methods and the microstructures obtained, a large scatter of thermal conductivity performance is found in literature.

View Article and Find Full Text PDF

This work considers the development of an easy and scalable approach to change the features of poly(l-lactide) (PLLA) films, which is based on the application of a surface treatment with an amino-functionalized polyhedral oligomeric silsesquioxane (POSS). Indeed, the developed approach is based on the potential reactivity of POSS amino group towards the polymer functionalities to produce an aminolysis reaction, which should promote the direct grafting of the silsesquioxane molecules on the polymer surface. Neat and treated films were studied by infrared spectroscopy and X-ray photoelectron spectroscopy, which proved the effectiveness of POSS grafting.

View Article and Find Full Text PDF

In this work, the preparation of nanocomposites based on poly(l-lactide) PLLA and graphite nanoplatelets (GNP) was assessed by applying, for the first time, the reactive extrusion (REX) polymerization approach, which is considered a low environmental impact method to prepare polymer systems and which allows an easy scalability. In particular, synthesized molecules, constituted by a pyrene end group and a poly(d-lactide) (PDLA) chain (Pyr-d), capable of interacting with the surface of GNP layers as well as forming stereoblocks during the ring-opening polymerization (ROP) of l-lactide, were used. The nanocomposites were synthesized by adding to l-lactide the GNP/initiator system, prepared by dispersing the graphite in the acetone/Pyr-d solution, which was dried after the sonication process.

View Article and Find Full Text PDF

The intrinsic properties of nanomaterials offer promise for technological revolutions in many fields, including transportation, soft robotics, and energy. Unfortunately, the exploitation of such properties in polymer nanocomposites is extremely challenging due to the lack of viable dispersion routes when the filler content is high. We usually face a dichotomy between the degree of nanofiller loading and the degree of dispersion (and, thus, performance) because dispersion quality decreases with loading.

View Article and Find Full Text PDF

The ring-opening polymerization of cyclic butylene terephthalate into poly(butylene terephthalate) (pCBT) in the presence of reduced graphene oxide (RGO) is an effective method for the preparation of polymer nanocomposites. The inclusion of RGO nanoflakes dramatically affects the crystallization of pCBT, shifting crystallization peak temperature to higher temperatures and, overall, increasing the crystallization rate. This was due to a supernucleating effect caused by RGO, which is maximized by highly reduced graphene oxide.

View Article and Find Full Text PDF

In this study, we report a novel strategy to prepare graphene nanopapers from direct vacuum filtration. Instead of the conventional method, i.e.

View Article and Find Full Text PDF

A novel drug delivery system based on poly(l-lactide) (PLLA), graphite, and porphyrin was developed. In particular, 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (THPP) was chosen because, besides its potential as codispersing agent of graphite, it is a pharmacologically active molecule. Graphite nanoplatelets, homogeneously dispersed in both the neat PLLA and the PLLA/porphyrin films, which were prepared by solution casting, turned out to improve the crystallinity of the polymer.

View Article and Find Full Text PDF