Publications by authors named "Samuele Bottani"

This article deals with the identification of gene regulatory networks from experimental data using a statistical machine learning approach. A stochastic model of gene interactions capable of handling missing variables is proposed. It can be described as a dynamic Bayesian network particularly well suited to tackle the stochastic nature of gene regulation and gene expression measurement.

View Article and Find Full Text PDF

Interpretation of high-throughput biological data requires a knowledge of the design principles underlying the networks that sustain cellular functions. Of particular importance is the genetic network, a set of genes that interact through directed transcriptional regulation. Genes that exert a regulatory role encode dedicated transcription factors (hereafter referred to as regulating proteins) that can bind to specific DNA control regions of regulated genes to activate or inhibit their transcription.

View Article and Find Full Text PDF