Publications by authors named "Samuel Zeng"

Allo-HSCT is a curative therapy for hematologic malignancies owing to GvL effect mediated by alloreactive T cells; however, the same T cells also mediate GvHD, a severe side effect limiting the widespread application of allo-HSCT in clinics. Invariant natural killer T (iNKT) cells can ameliorate GvHD while preserving GvL effect, but the clinical application of these cells is restricted by their scarcity. Here, we report the successful generation of third-party HSC-engineered human iNKT (HSC-iNKT) cells using a method combining HSC gene engineering and HSC differentiation.

View Article and Find Full Text PDF

Cell-based immunotherapy has become the new-generation cancer medicine, and "off-the-shelf" cell products that can be manufactured at large scale and distributed readily to treat patients are necessary. Invariant natural killer T (iNKT) cells are ideal cell carriers for developing allogeneic cell therapy because they are powerful immune cells targeting cancers without graft-versus-host disease (GvHD) risk. However, healthy donor blood contains extremely low numbers of endogenous iNKT cells.

View Article and Find Full Text PDF

Invariant natural killer T (iNKT) cells are a unique subset of T lymphocytes that recognize lipid antigens presented by nonpolymorphic major histocompatibility complex (MHC) I-like molecule CD1d. iNKT cells play essential roles in regulating immune responses against cancer, viral infection, autoimmune disease, and allergy. However, the study and application of iNKT cells have been hampered by their very small numbers (0.

View Article and Find Full Text PDF

Targeting tumor-associated macrophages (TAMs) is a promising strategy to modify the immunosuppressive tumor microenvironment and improve cancer immunotherapy. Monoamine oxidase A (MAO-A) is an enzyme best known for its function in the brain; small molecule MAO inhibitors (MAOIs) are clinically used for treating neurological disorders. Here we observe MAO-A induction in mouse and human TAMs.

View Article and Find Full Text PDF

Monoamine oxidase A (MAO-A) is an enzyme best known for its function in the brain, where it breaks down neurotransmitters and thereby influences mood and behavior. Small-molecule MAO inhibitors (MAOIs) have been developed and are clinically used for treating depression and other neurological disorders. However, the involvement of MAO-A in antitumor immunity has not been reported.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) results from the autoimmune destruction of β cells, so cure of firmly established T1D requires both reversal of autoimmunity and restoration of β cells. It is known that β cell regeneration in nonautoimmune diabetic mice can come from differentiation of progenitors and/or transdifferentiation of α cells. However, the source of β cell regeneration in autoimmune nonobese diabetic (NOD) mice remains unclear.

View Article and Find Full Text PDF

Direct lineage conversion is a promising approach to generate therapeutically important cell types for disease modeling and tissue repair. However, the survival and function of lineage-reprogrammed cells in vivo over the long term has not been examined. Here, using an improved method for in vivo conversion of adult mouse pancreatic acinar cells toward beta cells, we show that induced beta cells persist for up to 13 months (the length of the experiment), form pancreatic islet-like structures and support normoglycemia in diabetic mice.

View Article and Find Full Text PDF

The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily and a sensor and detoxifier of both xenobiotics and endobiotics. Recent studies also show that CAR participates in metabolism of glucose and lipid, and has an important role in fatty liver disease and diabetes. In this study, we investigate the roles of CAR in chronic and acute alcohol-induced liver injuries.

View Article and Find Full Text PDF

Unlabelled: MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by interacting with the 3' untranslated region (3'-UTR) of multiple mRNAs. Recent studies have linked miRNAs to the development of cancer metastasis. In this study, we show that miR-194 is specifically expressed in the human gastrointestinal tract and kidney.

View Article and Find Full Text PDF