A highly active and stable non-Pt electrocatalyst for hydrogen production has been pursued for a long time as an inexpensive alternative to Pt-based catalysts. Herein, we report a simple and effective approach to prepare high-performance iron phosphide (FeP) nanoparticle electrocatalysts using iron oxide nanoparticles as a precursor. A single-step heating procedure of polydopamine-coated iron oxide nanoparticles leads to both carbonization of polydopamine coating to the carbon shell and phosphidation of iron oxide to FeP, simultaneously.
View Article and Find Full Text PDFDemand on the practical synthetic approach to the high performance electrocatalyst is rapidly increasing for fuel cell commercialization. Here we present a synthesis of highly durable and active intermetallic ordered face-centered tetragonal (fct)-PtFe nanoparticles (NPs) coated with a "dual purpose" N-doped carbon shell. Ordered fct-PtFe NPs with the size of only a few nanometers are obtained by thermal annealing of polydopamine-coated PtFe NPs, and the N-doped carbon shell that is in situ formed from dopamine coating could effectively prevent the coalescence of NPs.
View Article and Find Full Text PDFThe synthesis of urchin-like Pt-Ni bimetallic nanostructures is achieved by a controlled one-pot synthesis. Pt-Ni nanostructures have superior oxygen reduction reaction activities in both with and without specific anion adsorption electrolytes due to the geometric and alloying effects.
View Article and Find Full Text PDFWearable systems that monitor muscle activity, store data and deliver feedback therapy are the next frontier in personalized medicine and healthcare. However, technical challenges, such as the fabrication of high-performance, energy-efficient sensors and memory modules that are in intimate mechanical contact with soft tissues, in conjunction with controlled delivery of therapeutic agents, limit the wide-scale adoption of such systems. Here, we describe materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address these challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate.
View Article and Find Full Text PDFWe report one-pot synthesis of magnetically recyclable mesoporous silica catalysts for tandem acid-base reactions. The catalysts could be easily recovered from the reaction mixture using a magnet, and the pore size of the catalysts could be controlled by introducing a swelling agent, resulting in the significant enhancement of the reaction rate.
View Article and Find Full Text PDFThree-photon excitation is a process that occurs when three photons are simultaneously absorbed within a luminophore for photo-excitation through virtual states. Although the imaging application of this process was proposed decades ago, three-photon biomedical imaging has not been realized yet owing to its intrinsic low quantum efficiency. We herein report on high-resolution in vitro and in vivo imaging by combining three-photon excitation of ZnS nanocrystals and visible emission from Mn(2+) dopants.
View Article and Find Full Text PDFWe present a rapid and reliable method for determining the sizes and size distributions of <5 nm-sized iron oxide nanocrystals (NCs) using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS). MS data were readily converted to size information using a simple equation. The size distribution obtained from the mass spectrum is well-matched with the data from transmission electron microscopy, which requires long and tedious analysis work.
View Article and Find Full Text PDFEver since Au nanoparticles were developed as X-ray contrast agents, researchers have actively sought alternative nanoparticle-based imaging probes that are not only inexpensive but also safe for clinical use. Herein, we demonstrate that bioinert tantalum oxide nanoparticles are suitable nanoprobes for high-performance X-ray computed tomography (CT) imaging while simultaneously being cost-effective and meeting the criteria as a biomedical platform. Uniformly sized tantalum oxide nanoparticles were prepared using a microemulsion method, and their surfaces were readily modified using various silane derivatives through simple in situ sol-gel reaction.
View Article and Find Full Text PDFA simple synthesis of Rh-Fe(3)O(4) heterodimer nanocrystals was achieved by controlled one-pot thermolysis. The nanocrystals exhibited excellent activities for the selective reduction of nitroarenes and alkenes. Furthermore the nanocrystal catalyst could be easily separated by a magnet, and recycled eight times without losing the catalytic activity.
View Article and Find Full Text PDFA simple gram-scale synthesis of Pd-Fe(3)O(4) heterodimer nanocrystals was achieved by controlled one-pot thermolysis of a mixture solution composed of iron acetylacetonate, palladium acetylacetonate, oleylamine, and oleic acid. The heterodimer nanocrystals are composed of a 6 nm-sized Pd nanosphere and a 30 nm-sized faceted Fe(3)O(4) nanocrystal and they are soft ferrimagnetic with high saturation magnetization value and low coercivity value. The heterodimer nanocrystals exhibited good activities for various Suzuki coupling reactions.
View Article and Find Full Text PDF