The strength of electrostatic interactions within semiconductors strongly affects their performance in optoelectronic devices. An important target is the tuning of a material's exciton binding energy-the energy binding an electron-hole pair through the electrostatic Coulomb force-independent of its electronic band gap. Here, we report on the doping of a family of two-dimensional hybrid perovskites, in which inorganic lead halide sheets alternate with naphthalene-based organic layers, with tetrachloro-1,2-benzoquinone (TCBQ).
View Article and Find Full Text PDFSignificant experimental and theoretical work has been devoted to understanding why colloidal nanocrystals (NCs) self-assemble into such a diverse array of structures. Previous research has focused on factors such as nanocrystal charging, the ratio of ligand length to core radius, core faceting, and ligand coverage among many controllable parameters. Here, we demonstrate that the presence of unbound/free ligand in colloidal suspension plays a pivotal role in determining NC superlattice (SL) structure and orientation.
View Article and Find Full Text PDFComplete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal surface. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging to formulate robustly.
View Article and Find Full Text PDFGlobal and target analysis techniques are ubiquitous tools for interpreting transient absorption (TA) spectra. However, characterizing uncertainty in the kinetic parameters and component spectra derived from these fitting procedures can be challenging. Furthermore, fitting TA spectra of inorganic nanomaterials where the component spectra of different excited states are nearly or completely overlapped is particularly problematic.
View Article and Find Full Text PDFIn semiconductors, increasing mobility with decreasing temperature is a signature of charge carrier transport through delocalized bands. Here, we show that this behavior can also occur in nanocrystal solids due to temperature-dependent structural transformations. Using a combination of broadband infrared transient absorption spectroscopy and numerical modeling, we investigate the temperature-dependent charge transport properties of well-ordered PbS quantum dot (QD) solids.
View Article and Find Full Text PDF