The hippocampus comprises two neural signals-place cells and θ oscillations-that contribute to facets of spatial navigation. Although their complementary relationship has been well established in rodents, their respective contributions in the primate brain during free navigation remains unclear. Here, we recorded neural activity in the hippocampus of freely moving marmosets as they naturally explored a spatial environment to more explicitly investigate this issue.
View Article and Find Full Text PDFFerrets have become a standard animal model for the development of early visual stages. Less is known about higher-level vision in ferrets, both during development and in adulthood. Here, as a step towards establishing higher-level vision research in ferrets, we used behavioral experiments to test the motion and form integration capacity of adult ferrets.
View Article and Find Full Text PDFThe core functional organization of the primate brain is remarkably conserved across the order, but behavioral differences evident between species likely reflect derived modifications in the underlying neural processes. Here, we performed the first study to directly compare visual recognition memory in two primate species-rhesus macaques and marmoset monkeys-on the same visual preferential looking task as a first step toward identifying similarities and differences in this cognitive process across the primate phylogeny. Preferences in looking behavior on the task were broadly similar between the species, with greater looking times for novel images compared with repeated images as well as a similarly strong preference for faces compared with other categories.
View Article and Find Full Text PDFCommunication is an inherently interactive process that weaves together the fabric of both human and nonhuman primate societies. To investigate the properties of the primate brain during active social signaling, we recorded the responses of frontal cortex neurons as freely moving marmosets engaged in conversational exchanges with a visually occluded virtual marmoset. We found that small changes in firing rate (∼1 Hz) occurred across a broadly distributed population of frontal cortex neurons when marmosets heard a conspecific vocalization, and that these changes corresponded to subjects' likelihood of producing or withholding a vocal reply.
View Article and Find Full Text PDFThe common marmoset has attracted increasing interest as a model for visual neuroscience. A measurement of fundamental importance to ensure the validity of visual studies is spatial acuity. The marmoset has excellent acuity that has been reported at the fovea to be nearly half that of the human (Ordy and Samorajski []: Vision Res 8:1205-1225), a value that is consistent with them having similar photoreceptor densities combined with their smaller eye size (Troilo et al.
View Article and Find Full Text PDFOptogenetics has revolutionized the study of functional neuronal circuitry (Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Nat Neurosci 8: 1263-1268, 2005; Deisseroth K. Nat Methods 8: 26-29, 2011).
View Article and Find Full Text PDFThe role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals.
View Article and Find Full Text PDFThe primate superior colliculus (SC) is important for the winner-take-all selection of targets for orienting movements. Such selection takes time, however, and the earliest motor responses typically are guided by a weighted vector average of the visual stimuli, before the winner-take-all selection of a single target. We tested whether SC activity plays a role in this initial stage of orienting by inactivating the SC in two macaques (Macaca mulatta) with local muscimol injections.
View Article and Find Full Text PDFIn addition to its well-known role in the control of saccades, the primate superior colliculus (SC) has been implicated in the processes of target choice for overt orienting movements and for covert spatial attention. We focally inactivated the SC, by muscimol injection, while monkeys selected the target of a smooth pursuit, saccade, or button press response from two competing stimuli. The choice stimuli were placed so that one appeared within and the other appeared outside the affected visual field.
View Article and Find Full Text PDFMarkov chains (stochastic processes where probabilities are assigned based on the previous outcome) are commonly used to examine the transitions between behavioral states, such as those that occur during foraging or social interactions. However, relatively little is known about how well primates can incorporate knowledge about Markov chains into their behavior. Saccadic eye movements are an example of a simple behavior influenced by information about probability, and thus are good candidates for testing whether subjects can learn Markov chains.
View Article and Find Full Text PDF