Changing polystyrene nanoparticles from three-dimensional spherical shape to two-dimensional disk shape promotes their cell surface binding with significant reduction of cell uptake. As a result of lower cell uptake, nanodisks show very little perturbations on cell functions such as cellular ROS generation, apoptosis and cell cycle progression compared to nanospheres. Therefore, disk-shaped nanoparticles may be a promising template for developing cell membrane-specific and safer imaging agents for a range of biomedical applications such as molecular imaging, tissue engineering, cell tracking, and stem cell separation.
View Article and Find Full Text PDFRobust surface-bound insulating polymer films with controlled thickness in <5 nm range are important for technological advances in diverse disciplines such as electrochemical sensors, molecular electronics, separations and anti-corrosive coatings. Creating these films by simple methods from readily available materials has been a significant challenge. Here we report a newly synthesized molecule combining a styrene and thiol moieties, joined via a short linker, that binds to the gold surface, polymerizes and crosslinks polymer chains to form robust films with uniform and controlled thickness and complete surface coverage.
View Article and Find Full Text PDFOrganic nanodisks, a new type of organic nanoparticles suitable for creating polymer-polymer nanocomposites, are produced by controlled polymerization within the hydrophobic interior of bicelles (discoidal lipid aggregates) used here as recyclable scaffolds.
View Article and Find Full Text PDF