Publications by authors named "Samuel Shutts"

The addition of elevated temperature steps (annealing) during the growth of InAs/GaAs quantum dot (QD) structures on Si substrates results in significant improvements in their structural and optical properties and laser device performance. This is shown to result from an increased efficacy of the dislocation filter layers (DFLs); reducing the density of dislocations that arise at the Si/III-V interface which reach the active region. The addition of two annealing steps gives a greater than three reduction in the room temperature threshold current of a 1.

View Article and Find Full Text PDF

We report on InAsP quantum dot lasers grown by MOVPE for 730-780 nm wavelength emission and compare performance with InP dot samples grown under similar conditions and with similar structures. 1-4 mm long, uncoated facet InAsP dot lasers emit between 760 and 775 nm and 2 mm long lasers with uncoated facets have threshold current density of 260 Acm(-2), compared with 150 Acm(-2) for InP quantum dot samples, which emit at shorter wavelengths, 715-725 nm. Pulsed lasing is demonstrated for InAsP dots up to 380 K with up to 200 mW output power.

View Article and Find Full Text PDF