Publications by authors named "Samuel Shani"

Back pain is a global epidemiological and socioeconomic problem often associated with intervertebral disc degeneration; a condition believed to initiate in the nucleus pulposus (NP). There is considerable interest in developing early therapeutic interventions to target the NP and halt degeneration. Rat caudal models of disc degeneration have demonstrated significant utility in the study of disease progression and its impact on tissue structure, composition, and mechanical performance.

View Article and Find Full Text PDF

Background: It has been previously suggested that the use of regenerative promoters, which include bone marrow-derived mesenchymal stem cells (MSCs) or natural growth factors supplement such as platelet-rich concentrate (PRC) could promote cartilage regeneration. However, the notion that the concurrent use of both promoters may provide a synergistic effect that improves the repair outcome of focal cartilage injury has not been previously demonstrated. This study was thus conducted to determine whether the concomitant use of PRC could further enhance the reparative potential of MSCs encapsulated in alginate transplanted into focal cartilage injury in rabbits.

View Article and Find Full Text PDF

Mesoporous bioactive glass containing 1% GaO (1%Ga-MBG) is attractive for hemorrhage control because of its surface chemistry which can promote blood-clotting. The present study compares this proprietary inorganic coagulation accelerator with two commercial hemostats, Celox (CX) and QuikClot Advanced Clotting Sponge Plus (ACS). The results indicate that the number of adherent platelets were higher on the 1%Ga-MBG and CX surfaces than ACS whereas a greater contact activation was seen on 1%Ga-MBG and ACS surfaces than CX.

View Article and Find Full Text PDF

Platelet-rich concentrate (PRC), used in conjunction with other chondroinductive growth factors, have been shown to induce chondrogenesis of human mesenchymal stromal cells (hMSC) in pellet culture. However, pellet culture systems promote cell hypertrophy and the presence of other chondroinductive growth factors in the culture media used in previous studies obscures accurate determination of the effect of platelet itself in inducing chondrogenic differentiation. Hence, this study aimed to investigate the effect of PRC alone in enhancing the chondrogenic differentiation potential of human mesenchymal stromal cells (hMSC) encapsulated in three-dimensional alginate constructs.

View Article and Find Full Text PDF

Previous studies have shown that platelet concentrates used in conjunction with appropriate growth media enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs). However, their potential in inducing osteogenesis of hMSCs when cultured in serum free medium has not been explored. Furthermore, the resulting osteogenic molecular signatures of the hMSCs have not been compared to standard osteogenic medium.

View Article and Find Full Text PDF

Presence of sulfated polysaccharides like heparan sulphate has often been implicated in the regulation of chondrogenesis. However, recently there has been a plethora of interest in the use of non-animal extracted analogs of heparan sulphate. Here we remodeled alginate (1.

View Article and Find Full Text PDF

Haemorrhage remains the leading cause of potentially survivable death in both military and civilian populations. Although a large variety of hemostatic agents have been developed, many of them have an inadequate capacity to induce hemostasis and are not effective in killing bacteria. In recent years, mesoporous bioactive glasses (MBGs) were found to be effective in inducing hemostasis.

View Article and Find Full Text PDF

Platelet rich concentrate (PRC) is a natural adjuvant that aids in human mesenchymal stromal cell (hMSC) proliferation in vitro; however, its role requires further exploration. This study was conducted to determine the optimal concentration of PRC required for achieving the maximal proliferation, and the need for activating the platelets to achieve this effect, and if PRC could independently induce early differentiation of hMSC. The gene expression of markers for osteocytes (ALP, RUNX2), chondrocytes (SOX9, COL2A1), and adipocytes (PPAR-γ) was determined at each time point in hMSC treated with 15% activated and nonactivated PRC since maximal proliferative effect was achieved at this concentration.

View Article and Find Full Text PDF

This study was conducted to develop a technique for minimally invasive and accurate delivery of stem cells to augment nucleus pulposus (NP) in damaged intervertebral discs (IVD). IVD damage was created in noncontiguous discs at L4-L5 level; rabbits (N = 12) were randomly divided into three groups: group I treated with MSCs in HyStem hydrogel, group II treated with HyStem alone, and group III received no intervention. MSCs and hydrogel were administered to the damaged disc under guidance of fluoroscopy.

View Article and Find Full Text PDF

A small population of highly tumorigenic breast cancer cells has recently been identified. These cells, known as breast-cancer stem-like cells (BCSC), express markers similar to mammary stem cells, and are highly resistant to chemotherapy. Currently, study of BCSC is hampered by the inability to propagate these cells in tissue culture without inducing differentiation.

View Article and Find Full Text PDF