Objective: The contribution of beta-cell dysfunction to type 2 diabetes (T2D) is not restricted to insulinopenia in the late stages of the disease. Elevated fasting insulinemia in normoglycemic humans is a major factor predicting the onset of insulin resistance and T2D, demonstrating an early alteration of beta-cell function in T2D. Moreover, an early and chronic increase in fasting insulinemia contributes to insulin resistance in high-fat diet (HFD)-fed mice.
View Article and Find Full Text PDFFasting hyperinsulinemia precedes the development of type 2 diabetes. However, it is unclear whether fasting insulin hypersecretion is a primary driver of insulin resistance or a consequence of the progressive increase in fasting glycemia induced by insulin resistance in the prediabetic state. Herein, we have discovered a mechanism that specifically regulates non-glucose-stimulated insulin secretion (NGSIS) in pancreatic islets that is activated by nonesterified free fatty acids, the major fuel used by β-cells during fasting.
View Article and Find Full Text PDFObjective: Islets from the same pancreas show remarkable variability in glucose sensitivity. While mitochondrial respiration is essential for glucose-stimulated insulin secretion, little is known regarding heterogeneity in mitochondrial function at the individual islet level. This is due in part to a lack of high-throughput and non-invasive methods for detecting single islet function.
View Article and Find Full Text PDFAdrenergic stimulation of brown adipocytes (BA) induces mitochondrial uncoupling, thereby increasing energy expenditure by shifting nutrient oxidation towards thermogenesis. Here we describe that mitochondrial dynamics is a physiological regulator of adrenergically-induced changes in energy expenditure. The sympathetic neurotransmitter Norepinephrine (NE) induced complete and rapid mitochondrial fragmentation in BA, characterized by Drp1 phosphorylation and Opa1 cleavage.
View Article and Find Full Text PDFBackground: The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR) may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking.
View Article and Find Full Text PDFObjective: The role of uncoupling protein 2 (UCP2) in pancreatic β-cells is highly debated, partly because of the broad tissue distribution of UCP2 and thus limitations of whole-body UCP2 knockout mouse models. To investigate the function of UCP2 in the β-cell, β-cell-specific UCP2 knockout mice (UCP2BKO) were generated and characterized.
Research Design And Methods: UCP2BKO mice were generated by crossing loxUCP2 mice with mice expressing rat insulin promoter-driven Cre recombinase.