Rice is the primary staple food for half of the world's population but is low in lysine content. Previously, we developed transgenic rice with enhanced free lysine content in rice seeds (lysine-rich rice), which was shown safe for consumption and improved the growth in rats. However, the effects of lysine-rich rice on skeletal growth and development remained unknown.
View Article and Find Full Text PDFCrop biofortification is pivotal in preventing malnutrition, with lysine considered the main limiting essential amino acid (EAA) required to maintain human health. Lysine deficiency is predominant in developing countries where cereal crops are the staple food, highlighting the need for efforts aimed at enriching the staple diet through lysine biofortification. Successful modification of aspartate kinase (AK) and dihydrodipicolinate synthase (DHDPS) feedback inhibition has been used to enrich lysine in transgenic rice plants without yield penalty, while increases in the lysine content of quality protein maize have been achieved via marker-assisted selection.
View Article and Find Full Text PDFLysine is the main limiting essential amino acid (EAA) in the rice seeds, which is a major energy and nutrition source for humans and livestock. In higher plants, the rate-limiting steps in lysine biosynthesis pathway are catalysed by two key enzymes, aspartate kinase (AK) and dihydrodipicolinate synthase (DHDPS), and both are extremely sensitive to feedback inhibition by lysine. In this study, two rice AK mutants (AK1 and AK2) and five DHDPS mutants (DHDPS1-DHDPS5), all single amino acid substitution, were constructed.
View Article and Find Full Text PDFCereal endosperms produce a vast array of metabolites, including the essential amino acid lysine (Lys). Enhanced accumulation of Lys has been achieved via metabolic engineering in cereals, but the potential connection between metabolic engineering and Lys fortification is unclear. In mature seeds of engineered High Free Lysine (HFL) rice (), the endosperm takes on a characteristic dark-brown appearance.
View Article and Find Full Text PDFLysine is the first limiting essential amino acid in rice. We previously constructed a series of transgenic rice lines to enhance lysine biosynthesis (35S), down-regulate its catabolism (Ri), or simultaneously achieve both metabolic effects (35R). In this study, nine transgenic lines, three from each group, were selected for both field and animal feeding trials.
View Article and Find Full Text PDFRice is an excellent source of protein, and has an adequate balance of amino acids with the exception of the essential amino acid lysine. By using a combined enhancement of lysine synthesis and suppression of its catabolism, we had produced two transgenic rice lines HFL1 and HFL2 (High Free Lysine) containing high concentration of free lysine. In this study, a 70-day rat feeding study was conducted to assess the nutritional value of two transgenic lines as compared with either their wild type (WT) or the WT rice supplemented with different concentrations of L-lysine.
View Article and Find Full Text PDFLysine is considered to be the first essential amino acid in rice. An elite High-Free-Lysine transgenic line HFL1 was previously produced by metabolic engineering to regulate lysine metabolism. In this study, a 90-day toxicology experiment was undertaken to investigate the potential health effect of feeding different doses of HFL1 rice to Sprague-Dawley rats.
View Article and Find Full Text PDFBackground: Lysine (Lys) is considered to be the first limiting essential amino acid in rice. Although there have been extensive efforts to improve the Lys content of rice through traditional breeding and genetic engineering, no satisfactory products have been achieved to date.
Results: We expressed a LYSINE-RICH PROTEIN gene (LRP) from Psophocarpus tetragonolobus (L.
Rice (Oryza sativa L.), a major staple crop worldwide, has limited levels of the essential amino acid lysine. We previously produced engineered rice with increased lysine content by expressing bacterial aspartate kinase and dihydrodipicolinate synthase and inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase activity.
View Article and Find Full Text PDFSlPAP1 is a phosphate starvation responsive purple acid phosphatase during tomato seed germination. Future research on its family members in tomato might improve the phosphate stress tolerance. Phosphate deficiency is a major constraint upon crop growth and yield.
View Article and Find Full Text PDFRNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, altering the amino acid specified by the DNA sequence. Here we report the identification of a critical editing factor of mitochondrial nad7 transcript via molecular characterization of a small kernel 1 (smk1) mutant in Zea mays (maize). Mutations in Smk1 arrest both the embryo and endosperm development.
View Article and Find Full Text PDFUltrasound (US)-mediated gene delivery has emerged as a promising non-viral method for safe and selective gene delivery. When enhanced by the cavitation of microbubbles (MBs), US exposure can induce sonoporation that transiently increases cell membrane permeability for localized delivery of DNA. The present study explores the effect of generalizable MB customizations on MB facilitation of gene transfer compared to Definity®, a clinically available contrast agent.
View Article and Find Full Text PDFBackground: Insulin-like growth factor binding protein-3 (IGFBP-3) is a multifunctional molecule which is closely related to cell growth, apoptosis, angiogenesis, metabolism and senescence. It combines with insulin-like growth factor-I (IGF-I) to form a complex (IGF-I/IGFBP-3) that can treat growth hormone insensitivity syndrome (GHIS) and reduce insulin requirement in patients with diabetes. IGFBP-3 alone has been shown to have anti-proliferation effect on numerous cancer cells.
View Article and Find Full Text PDFFood supply and food safety are major global public health issues, and are particularly important in heavily populated countries such as China. Rapid industrialisation and modernisation in China are having profound effects on food supply and food safety. In this Review, we identified important factors limiting agricultural production in China, including conversion of agricultural land to other uses, freshwater deficits, and soil quality issues.
View Article and Find Full Text PDFUltrasound (US) was applied to a targeted canine liver lobe simultaneously with injection of plasmid DNA (pDNA)/microbubble (MB) complexes into a portal vein (PV) segmental branch and occlusion of the inferior vena cava (IVC) to facilitate DNA uptake. By using a 1.1 MHz, 13 mm diameter transducer, a fivefold increase in luciferase activity was obtained at 3.
View Article and Find Full Text PDFBackground: Starch, the major component of rice grain, consists of amylose and amylopectin. SSIIa, a key soluble starch synthase involved in the biosynthesis of rice amylopectin, is a major factor that controls the gelatinization temperature of rice grain. Extensive work has been done and impressive progress has been made in elaborating the function of the gene encoding SSIIa (OsSSII-3).
View Article and Find Full Text PDFLysine (Lys) is the first limiting essential amino acid in rice, a stable food for half of the world population. Efforts, including genetic engineering, have not achieved a desirable level of Lys in rice. Here, we genetically engineered rice to increase Lys levels by expressing bacterial lysine feedback-insensitive aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS) to enhance Lys biosynthesis; through RNA interference of rice lysine ketoglutaric acid reductase/saccharopine dehydropine dehydrogenase (LKR/SDH) to down-regulate its catabolism; and by combined expression of AK and DHPS and interference of LKR/SDH to achieve both metabolic effects.
View Article and Find Full Text PDFLarge-scale protein phosphorylation analysis by MS is emerging as a powerful tool in plant signal transduction research. However, our current understanding of the phosphorylation regulatory network in plants is still very limited. Here, we report on a proteome-wide profiling of phosphopeptides in nine-day-old Arabidopsis (Arabidopsis thaliana) seedlings by using an enrichment method combining the titanium (Ti(4+))-based IMAC and the RP-strong cation exchange (RP-SCX) biphasic trap column-based online RPLC.
View Article and Find Full Text PDFPlant growth and development are coordinated by several groups of small-molecule hormones, including brassinosteroids (BRs) and gibberellins (GAs). Physiological and molecular studies have suggested the existence of crosstalk between BR and GA signaling. We report that BZR1, a key transcription factor activated by BR signaling, interacts in vitro and in vivo with REPRESSOR OF ga1-3 (RGA), a member of the DELLA family of transcriptional regulators that inhibits the GA signaling pathway in Arabidopsis thaliana.
View Article and Find Full Text PDFMany computational methods have been widely used to identify transcription regulatory interactions based on gene expression profiles. The selection of dependency measure is very important for successful regulatory network inference. In this paper, we develop a new method-DBoMM (Difference in BIC of Mixture Models)-for estimating dependency of gene by fitting the gene expression profiles into mixture Gaussian models.
View Article and Find Full Text PDFRobertson's Mutator (Mu) system has been used in large scale mutagenesis in maize, exploiting its high mutation frequency, controllability, preferential insertion in genes, and independence of donor location. Eight Mutator elements have been fully characterized (Mu1, Mu2 /Mu1.7, Mu3, Mu4, Mu5, Mu6/7, Mu8, MuDR), and three are defined by TIR (Mu10, Mu11 and Mu12).
View Article and Find Full Text PDFNitrogen (N) is an important nutrient and signal for plant growth and development. However, to date, our knowledge of how plants sense and transduce the N signals is very limited. To better understand the molecular mechanisms of plant N responses, we took two-dimensional gel-based proteomic and phosphoproteomic approaches to profile the proteins with abundance and phosphorylation state changes during nitrate deprivation and recovery in the model plant Arabidopsis thaliana.
View Article and Find Full Text PDFBMC Biotechnol
October 2011
Background: Human granulocyte colony-stimulating factor (hG-CSF) is an important human cytokine which has been widely used in oncology and infection protection. To satisfy clinical needs, expression of recombinant hG-CSF has been studied in several organisms, including rice cell suspension culture and transient expression in tobacco leaves, but there was no published report on its expression in stably transformed plants which can serve as a more economical expression platform with potential industrial application.
Results: In this study, hG-CSF expression was investigated in transgenic tobacco leaves and seeds in which the accumulation of hG-CSF could be enhanced through fusion with ubiquitin by up to 7 fold in leaves and 2 fold in seeds, leading to an accumulation level of 2.
Background: Plant bioreactor offers an efficient and economical system for large-scale production of recombinant proteins. However, high cost and difficulty in scaling-up of downstream purification of the target protein, particularly the common involvement of affinity chromatography and protease in the purification process, has hampered its industrial scale application, therefore a cost-effective and easily scale-up purification method is highly desirable for further development of plant bioreactor.
Methodology/principal Findings: To tackle this problem, we investigated the ELP-intein coupling system for purification of recombinant proteins expressed in transgenic plants using a plant lectin (PAL) with anti-tumor bioactivity as example target protein and rice seeds as production platform.
Comput Biol Med
September 2011
Bayesian network (BN) has been successfully used to infer the regulatory relationships of genes from microarray dataset. However, one major limitation of BN approach is the computational cost because the calculation time grows more than exponentially with the dimension of the dataset. In this paper, we propose a sub-space greedy search method for efficient Bayesian Network inference.
View Article and Find Full Text PDF