Purpose: To evaluate the reduction in the absorbed dose delivered to the neurovascular bundle (NB) in patients with localized prostate cancer treated with only HDR brachytherapy and NB protection with hyaluronic acid (HA) on the side of the prostate to increase the distance from NB to the radioactive sources.
Methods: This is the first published report in the medical literature that studies a new approach to decrease neurovascular bundle toxicity and improve quality of life for patients with prostate cancer treated with radical brachytherapy as monotherapy. Transperineal HA injection on the side of the prostate into the lateral aspect of the prostate fat was used to consistently displace several autonomic fibers and vessels on the lateral wall of the prostate away from radiation sources.
Purpose: Schemes with high doses per fraction and small number of fractions are commonly used in high-dose-rate brachytherapy (HDR-BT) for prostate cancer. Our aim was to analyze the differences between published clinical results and the predictions of radiobiological models for absorbed dose required in a single fraction monotherapy HDR-BT.
Material And Methods: Published HDR-BT clinical results for low- and intermediate-risk patients with prostate cancer were revised.
Purpose: The objective of this study was to characterize the Best Medical Canada microMOSFET detectors for their application in in vivo dosimetry for high-dose-rate brachytherapy (HDRBT) with Ir. We also developed a mathematical model to correct dependencies under the measurement conditions of these detectors.
Methods: We analyzed the linearity, reproducibility, and interdetector variability and studied the microMOSFET response dependence on temperature, source-detector distance, and angular orientation of the receptor with respect to the source.
Background: This study aimed to evaluate the outcomes and the toxicity of focal high-dose-rate (HDR) brachytherapy in selected localized prostate cancer patients.
Methods: Fifty patients were treated with focal high-dose-rate brachytherapy between March 2013 and November 2017, representing 5% of the cases treated by our group during this period. Only patients with very limited and localized tumors, according to strict criteria, were selected for the procedure.
Purpose: The purpose of the study was to report the outcomes and late toxicities in patients younger than 60 years of age with long-term follow-up treated with low dose rate (LDR) brachytherapy for localized prostate cancer.
Methods: Between January 2000 and December 2009, 270 consecutive patients were treated with favourable localized prostate cancer; the median follow-up was 111 months (range 21-206). All patients received one implant of LDR brachytherapy.
Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction.
View Article and Find Full Text PDF