Developmental self-assembly of DNA nanostructures provides an ideal platform for studying the power and programmability of kinetically controlled structural growth in engineered molecular systems. Triggered initiation and designated sequencing of assembly and disassembly steps have been demonstrated in structures with branches and loops. Here we introduce a new strategy for selectively activating distinct subroutines in a developmental self-assembly program, allowing structures with distinct properties to be created in response to various molecular signals.
View Article and Find Full Text PDFDNA catalysts are fundamental building blocks for diverse molecular information-processing circuits. Allosteric control of DNA catalysts has been developed to activate desired catalytic pathways at desired times. Here we introduce a new type of DNA catalyst that we call a cooperative catalyst: a pair of reversible reactions are employed to drive a catalytic cycle in which two signal species, which can be interpreted as an activator and an input, both exhibit catalytic behavior for output production.
View Article and Find Full Text PDFA new wave of interest in cell-free protein synthesis (CFPS) systems has shown their utility for producing proteins at high titers, establishing genetic regulatory element libraries ( e.g., promoters, ribosome binding sites) in nonmodel organisms, optimizing biosynthetic pathways before implementation in cells, and sensing biomarkers for diagnostic applications.
View Article and Find Full Text PDF