Multi-b diffusion-weighted hyperpolarized gas MRI measures pulmonary airspace enlargement using apparent diffusion coefficients (ADC) and mean linear intercepts (). Rapid single-breath acquisitions may facilitate clinical translation, and, hence, we aimed to develop single-breath three-dimensional multi-b diffusion-weighted Xe MRI using k-space undersampling. We evaluated multi-b (0, 12, 20, 30 s/cm) diffusion-weighted Xe ADC/morphometry estimates using a fully sampled and retrospectively undersampled k-space with two acceleration-factors (AF = 2 and 3) in never-smokers and ex-smokers with chronic obstructive pulmonary disease (COPD) or alpha-one anti-trypsin deficiency (AATD).
View Article and Find Full Text PDFMagnetic Resonance Imaging (MRI) is dictated by the magnetization of the sample, and is thus a low-sensitivity imaging method. Inhalation of hyperpolarized (HP) noble gases, such as helium-3 and xenon-129, is a non-invasive, radiation-risk free imaging technique permitting high resolution imaging of the lungs and pulmonary functions, such as the lung microstructure, diffusion, perfusion, gas exchange, and dynamic ventilation. Instead of increasing the magnetic field strength, the higher spin polarization achievable from this method results in significantly higher net MR signal independent of tissue/water concentration.
View Article and Find Full Text PDFInhaled hyperpolarized Xe MRI is a non-invasive and radiation risk free lung imaging method, which can directly measure the business unit of the lung where gas exchange occurs: the alveoli and acinar ducts (lung function). Currently, three imaging approaches have been demonstrated to be useful for hyperpolarized Xe MR in lungs: Fast Gradient Recalled Echo (FGRE), Radial Projection Reconstruction (PR), and spiral/cones. Typically, non-Cartesian acquisitions such as PR and spiral/cones require specific data post-processing, such as interpolating, regridding, and density-weighting procedures for image reconstruction, which often leads to smoothing effects and resolution degradation.
View Article and Find Full Text PDF