Publications by authors named "Samuel Palato"

Semiconductor quantum dots are characterized by a discrete excitonic structure featuring coarse as well as fine structure. The lowest fine structure states have splittings into bright-dark states which are now well confirmed by single dot spectroscopy. In contrast, the splitting of the lowest coarse exciton into bright-bright fine structure states has not been observed nor the dynamics between these states.

View Article and Find Full Text PDF

Two-dimensional electronic spectroscopy (2DES) has recently been gaining popularity as an alternative to the more common transient absorption spectroscopy due to the combination of high frequency and time resolution of 2DES. In order to advance the reliable analysis of population dynamics and to optimize the time resolution of the method, one has to understand the numerous field matter interactions that take place at an early and negative time. These interactions have historically been discussed in one-dimensional spectroscopy as coherent artifacts and have been assigned to both resonant and non-resonant system responses during or before the pulse overlap.

View Article and Find Full Text PDF

Two-quantum variants of two-dimensional electronic spectroscopy (2DES) have previously been used to characterize multi-exciton interactions in molecules and semiconductor nanostructures though many implementations are limited by phasing procedures or non-resonant signals. We implement 2DES using phase-cycling to simultaneously measure one-quantum and two-quantum spectra in colloidal CdSe quantum dots. In the pump-probe geometry, fully absorptive spectra are automatically acquired by measuring the sum of the rephasing and nonrephasing signals.

View Article and Find Full Text PDF

The microscopic origin and timescale of the fluctuations of the energies of electronic states has a significant impact on the properties of interest of electronic materials, with implication in fields ranging from photovoltaic devices to quantum information processing. Spectroscopic investigations of coherent dynamics provide a direct measurement of electronic fluctuations. Modern multidimensional spectroscopy techniques allow the mapping of coherent processes along multiple time or frequency axes and thus allow unprecedented discrimination between different sources of electronic dephasing.

View Article and Find Full Text PDF

Lead-halide perovskites have attracted tremendous attention, initially for their performance in thin film photovoltaics, and more recently for a variety of remarkable optical properties. Defect tolerance through polaron formation within the ionic lattice is a key aspect of these materials. Polaron formation arises from the dynamical coupling of atomic fluctuations to electronic states.

View Article and Find Full Text PDF

The electronic structure of multiexcitons significantly impacts the performance of nanostructures in lasing and light-emitting applications. However, these multiexcitons remain poorly understood due to their complexity arising from many-body physics. Standard transient-absorption and photoluminescence spectroscopies are unable to unambiguously distinguish effects of sample inhomogeneity from exciton-biexciton interactions.

View Article and Find Full Text PDF

Ultrafast coherent multi-dimensional spectroscopies form a powerful set of techniques to unravel complex processes, ranging from light-harvesting, chemical exchange in biological systems to many-body interactions in quantum-confined materials. Yet these spectroscopies remain complex to implement at the high frequencies of vibrational and electronic transitions, thereby limiting their widespread use. Here we demonstrate the feasibility of two-dimensional spectroscopy at optical frequencies in a single beam.

View Article and Find Full Text PDF

We report on a setup for coherent multidimensional spectroscopy based on visible continuum generation obtained by propagating 130 fs, <600  μJ pulses centered at 800 nm in a 2.5 m long hollow-core fiber. We find that with these modest input pulse requirements, the fiber can produce a stable, high brightness continuum spanning the 520-900 nm region, moreover in a single propagation step.

View Article and Find Full Text PDF