Vertebral bone marrow fat quantification using single-voxel MRS is confounded by overlapping water-fat peaks and the difference in T2 relaxation time between water and fat components. The purposes of the present study were: (i) to determine the proton density fat fraction (PDFF) of vertebral bone marrow using single-voxel multi-TE MRS, addressing these confounding effects; and (ii) to investigate the implications of these corrections with respect to the age dependence of the PDFF. Single-voxel MRS was performed in the L5 vertebral body of 86 subjects (54 women and 32 men).
View Article and Find Full Text PDFBackground: The assessment of bone marrow composition has recently gained significant attention due to its association with bone loss pathophysiology and cancer therapy-induced bone marrow damage. The purpose of our study was to investigate the anatomical variation of the vertebral bone marrow fat using chemical shift-encoding based water-fat MRI and to assess the repeatability of these measurements.
Methods: Chemical shift-encoding based water-fat MRI of the whole spine was performed in 28 young, healthy subjects (17 males, 11 females, 26 ± 4 years).
The goal of this magnetic resonance (MR) imaging study was to quantify vertebral bone marrow fat content and composition in diabetic and nondiabetic postmenopausal women with fragility fractures and to compare them with nonfracture controls with and without type 2 diabetes mellitus. Sixty-nine postmenopausal women (mean age 63 ± 5 years) were recruited. Thirty-six patients (47.
View Article and Find Full Text PDFThe primary goal of this study was to assess peripheral bone microarchitecture and strength in postmenopausal women with type 2 diabetes with fragility fractures (DMFx) and to compare them with postmenopausal women with type 2 diabetics without fractures (DM). Secondary goals were to assess differences in nondiabetic postmenopausal women with fragility fractures (Fx) and nondiabetic postmenopausal women without fragility fractures (Co), and in DM and Co women. Eighty women (mean age 61.
View Article and Find Full Text PDFObjective: The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique.
Methods: Sixty-two women (age 61 ± 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum.
Purpose: To compare vertebral bone marrow fat content quantified with proton MR spectroscopy ((1)H-MRS) with the volume of abdominal adipose tissue, lumbar spine volumetric bone mineral density (vBMD), and blood biomarkers in postmenopausal women with and without type 2 diabetes mellitus (T2DM).
Materials And Methods: Thirteen postmenopausal women with T2DM and 13 age- and body mass index-matched healthy controls were included in this study. All subjects underwent (1)H-MRS of L1-L3 to quantify vertebral bone marrow fat content (FC) and unsaturated lipid fraction (ULF).