Publications by authors named "Samuel P Douglas"

Photoactivated catalysts for the hydrosilylation of alkenes with silanes offer temporal control in manufacturing processes that require silicone curing. We report the development of a range of air-stable Pt(II) (salicylaldimine)(phenylpyridyl), [Pt(sal)(ppy)], complexes as photoinitiated hydrosilylation catalysts. Some of these catalysts show appreciable latency in thermal catalysis and can also be rapidly (10 s) activated by a LED UV-light source (365 nm), to give systems that selectively couple trimethylvinylsilane and hexamethylsiloxymethylsilane to give the linear hydrosilylation product.

View Article and Find Full Text PDF

The field of printed electronics strives for lower processing temperatures to move toward flexible substrates that have vast potential: from wearable medical devices to animal tagging. Typically, ink formulations are optimized using mass screening and elimination of failures; as such, there are no comprehensive studies on the fundamental chemistry at play. Herein, findings which describe the steric link to decomposition profile: combining density functional theory, crystallography, thermal decomposition, mass spectrometry, and inkjet printing, are reported.

View Article and Find Full Text PDF

Precursor design is the crucial step in tailoring the deposition profile towards a multitude of functional materials. Most commercially available aluminium oxide precursors require high processing temperatures (>500 °C). Herein, we report the tuning of the decomposition profile (200-350 °C) of a range of octahedrally coordinated tris(β-ketoiminate) aluminium complexes of the type [Al(MeCN(R)CHC=OMe) ], by varying the R substituents in the ligands.

View Article and Find Full Text PDF

This Minireview compares two distinct ink types, namely metal-organic decomposition (MOD) and nanoparticle (NP) formulations, for use in the printing of some of the most conductive elements: silver, copper and aluminium. Printing of highly conductive features has found purpose across a broad array of electronics and as processing times and temperatures reduce, the avenues of application expand to low-cost flexible substrates, materials for wearable devices and beyond. Printing techniques such as screen, aerosol jet and inkjet printing are scalable, solution-based processes that historically have employed NP formulations to achieve low resistivity coatings printed at high resolution.

View Article and Find Full Text PDF

Metal-organic decomposition (MOD) precursor inks are emerging as the new route to low-temperature deposition of highly conductive metals, owing to the tunability of their decomposition. New methods of printing are being investigated to help negate the progressive issues of the electronics industry, not least the movement toward low-cost polymers and paper substrates. Informed precursor design is crucial if achieving materials capable of this is possible.

View Article and Find Full Text PDF

We report here for the first time how the combination of a precursor solution and low temperature (170 °C) aerosol assisted chemical vapour deposition were used to bond a copper coating to ultra-high molecular weight polyethylene (UHMWPE) and promote robustness. This metallic thin film remained intact on the UHMWPE substrate after the Scotch tape test and showed notable wear-resistance after 10 cycles of sand paper-abrasion. Antimicrobial assays against both Escherichia coli and Staphylococcus aureus revealed potent dark bactericidal activity with 99.

View Article and Find Full Text PDF

Bidentate diamine and amino-alcohol ligands have been used to form solid, water-soluble, and air-stable monomeric copper complexes of the type [Cu(NHCHCH(R)Y)(NO)] (, R=H, Y=NH; , R=H, Y=OH; , R=Me, Y=OH). The complexes were characterized by elemental analysis, mass spectrometry, infrared spectroscopy, thermal gravimetric analysis, and single-crystal X-ray diffraction. Irrespective of their decomposition temperature, precursors - yield highly conductive copper features [1.

View Article and Find Full Text PDF