Mobile robotic telepresence systems require that information about the environment, the task, and the robot be presented to a remotely located user (operator) who controls the robot for a specific task. In this study, two interaction modes, proactive and reactive, that differ in the way the user receives information from the robot, were compared in an experimental system simulating a healthcare setting. The users controlled a mobile telepresence robot that delivered and received items (medication, food, or drink), and also obtained metrics (vital signs) from a simulated patient while the users performed a secondary healthcare-related task (they compiled health records which were displayed to them on the screen and answered related questions).
View Article and Find Full Text PDFAssistive robots have the potential to support independence, enhance safety, and lower healthcare costs for older adults, as well as alleviate the demands of their care partners. However, ensuring that these robots will effectively and reliably address end-user needs in the long term requires user-specific design factors to be considered during the robot development process. To identify these design factors, we embedded Stretch, a mobile manipulator created by Hello Robot Inc.
View Article and Find Full Text PDFThis paper focuses on how the autonomy level of an assistive robot that offers support for older adults in a daily task and its feedback affect the interaction. Identifying the level of automation (LOA) that prioritizes older adults' preferences while avoiding passiveness and sedentariness is challenging. The feedback mode should match the cognitive and perceptual capabilities of older adults and the LOA.
View Article and Find Full Text PDFPhysical exercise has many physical, psychological and social health benefits leading to improved life quality. This paper presents a robotic system developed as a personal coach for older adults aiming to motivate older adults to participate in physical activities. The robot instructs the participants, demonstrates the exercises and provides real-time corrective and positive feedback according to the participant's performance as monitored by an RGB-D camera.
View Article and Find Full Text PDF