Publications by authors named "Samuel Ochieng"

Anopheline mosquitoes rely on their highly sensitive chemosensory apparatus to detect diverse chemical stimuli that drive the host-seeking and blood-feeding behaviors required to vector pathogens for malaria and other diseases. This process incorporates a variety of chemosensory receptors and transduction pathways. We used advanced in vivo gene-editing and -labeling approaches to localize and functionally characterize the ionotropic coreceptor AcIr76b in the malaria mosquito Anopheles coluzzii, where it impacts both olfactory and gustatory systems.

View Article and Find Full Text PDF

Objective: To describe factors associated with mother-to-child HIV transmission (MTCT) in Kenya and identify opportunities to increase testing/care coverage.

Design: Cross-sectional analysis of national early infant diagnosis (EID) database.

Methods: 365,841 Kenyan infants were tested for HIV from January 2007-July 2015 and results, demographics, and treatment information were entered into a national database.

View Article and Find Full Text PDF

Several phorid fly species were introduced to the southern United States for biological control of the invasive imported fire ants, Solenopsis richteri (Black), Solenopsis invicta (Red), and their Hybrid S. richteri×S. invicta (Hybrid).

View Article and Find Full Text PDF

It is well documented that host-related odors enable many species of parasitoids and predatory insects to locate their prey and prey habitats. This study reports the first characterization of prey and prey host odor reception in two species of lacewings, Chrysoperla carnea (Say) and Chrysopa oculata L. 2-Phenylethanol, one of the volatiles emitted from their prey's host plants (alfalfa and corn) evoked a significant EAG response from antennae of C.

View Article and Find Full Text PDF

Insects have a highly developed olfactory sensory system, mainly based in their antennae, for the detection and discrimination of volatile compounds in the environment. Electroantennogram (EAG) response profiles of five different insect species, Drosophila melanogaster, Heliothis virescens, Helicoverpa zea, Ostrinia nubilalis and Microplitis croceipes, showed different, species-specific EAG response spectra to 20 volatile compounds tested. The EAG response profiles were then reconstructed for each compound across the five insect species.

View Article and Find Full Text PDF