At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting β cell health and immune system activity. The ability to predict decline in insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic selection.
View Article and Find Full Text PDFThe stochastic kinetics of transcription is typically inferred from the distribution of RNA numbers in individual cells. However, cellular RNA reflects additional processes downstream of transcription, hampering this analysis. In contrast, nascent (actively transcribed) RNA closely reflects the kinetics of transcription.
View Article and Find Full Text PDFMYC (also known as c-MYC) overexpression or hyperactivation is one of the most common drivers of human cancer. Despite intensive study, the MYC oncogene remains recalcitrant to therapeutic inhibition. MYC is a transcription factor, and many of its pro-tumorigenic functions have been attributed to its ability to regulate gene expression programs.
View Article and Find Full Text PDFWe present a protocol for measuring the absolute number of mRNA molecules from a gene of interest in individual, chemically fixed Escherichia coli cells. A set of fluorescently labeled oligonucleotide probes is hybridized to the target mRNA, such that each mRNA molecule is decorated by a known number of fluorescent dyes. Cells are then imaged using fluorescence microscopy.
View Article and Find Full Text PDFMyc is an oncogenic transcription factor frequently dysregulated in human cancer. To identify pathways supporting the Myc oncogenic program, we used a genome-wide RNA interference screen to search for Myc-synthetic lethal genes and uncovered a role for the SUMO-activating enzyme (SAE1/2). Loss of SAE1/2 enzymatic activity drives synthetic lethality with Myc.
View Article and Find Full Text PDFViral infection begins with the binding of a virus to a specific target on the surface of the host cell, followed by viral genome delivery into the host and a continuation of the infection process. Before binding occurs, the virus must first find its receptor by a process whose details are largely unknown. We applied high-resolution fluorescence microscopy and single-particle tracking to elucidate the target-finding process in bacteriophage λ as it infects an Escherichia coli cell.
View Article and Find Full Text PDFThe ability of living cells to maintain an inheritable memory of their gene-expression state is key to cellular differentiation. Bacterial lysogeny serves as a simple paradigm for long-term cellular memory. In this study, we address the following question: in the absence of external perturbation, how long will a cell stay in the lysogenic state before spontaneously switching away from that state? We show by direct measurement that lysogen stability exhibits a simple exponential dependence on the frequency of activity bursts from the fate-determining gene, cI.
View Article and Find Full Text PDFWhen the process of cell-fate determination is examined at single-cell resolution, it is often observed that individual cells undergo different fates even when subject to identical conditions. This "noisy" phenotype is usually attributed to the inherent stochasticity of chemical reactions in the cell. Here we demonstrate how the observed single-cell heterogeneity can be explained by a cascade of decisions occurring at the subcellular level.
View Article and Find Full Text PDF