This paper consists in the description and application of a method called wavelet-induced mode extraction (WIME) in the context of time-frequency analysis. WIME aims to extract the oscillating components that build amplitude modulated-frequency modulated signals. The essence of this technique relies on the successive extractions of the dominant ridges of wavelet-based time-frequency representations of the signal under consideration.
View Article and Find Full Text PDFPSII antenna size heterogeneity has been intensively studied in the past. Based on DCMU fluorescence rise kinetics, multiple types of photosystems with different properties were described. However, due to the complexity of fluorescence signal analysis, multiple questions remain unanswered.
View Article and Find Full Text PDFIn this work, we investigated a large-scale organization of the human genes with respect to putative replication origins. We developed an appropriate multiscale method to analyze the nucleotide compositional skew along the genome and found that in more than one-quarter of the genome, the skew profile presents characteristic patterns consisting of successions of N-shaped structures, designated here N-domains, bordered by putative replication origins. Our analysis of recent experimental timing data confirmed that, in a number of cases, domain borders coincide with replication initiation zones active in the early S phase, whereas the central regions replicate in the late S phase.
View Article and Find Full Text PDFIn the course of evolution, mutations do not affect both strands of genomic DNA equally. This imbalance mainly results from asymmetric DNA mutation and repair processes associated with replication and transcription. In prokaryotes, prevalence of G over C and T over A is frequently observed in the leading strand.
View Article and Find Full Text PDF