Publications by authors named "Samuel Mugo"

Use of brain-computer interfaces (BCIs) is rapidly becoming a transformative approach for diagnosing and treating various brain disorders. By facilitating direct communication between the brain and external devices, BCIs have the potential to revolutionize neural activity monitoring, targeted neuromodulation strategies, and the restoration of brain functions. However, BCI technology faces significant challenges in achieving long-term, stable, high-quality recordings and accurately modulating neural activity.

View Article and Find Full Text PDF

Implantable neural probes hold promise for acquiring brain data, modulating neural circuits, and treating various brain disorders. However, traditional implantable probes face significant challenges in practical applications, such as balancing sensitivity with biocompatibility and the difficulties of in situ neural information monitoring and neuromodulation. To address these challenges, this study developed an implantable hydrogel probe capable of recording neural signals, modulating neural circuits, and treating stroke.

View Article and Find Full Text PDF

Molecularly imprinted polymers (MIPs) are a growing highlight in polymer chemistry. They are chemically and thermally stable, may be used in a variety of environments, and fulfill a wide range of applications. Computer-aided studies of MIPs often involve the use of computational techniques to design, analyze, and optimize the production of MIPs.

View Article and Find Full Text PDF
Article Synopsis
  • * A novel portable saliva biosensor has been developed to detect this bacterial agent early, potentially helping to predict dental cavities before they occur.
  • * The biosensor uses a specialized DNA aptamer and imprinted polymers, achieving high sensitivity and selectivity, with effective detection limits down to 2.6 cfu/mL, making it a promising tool for caries prevention.
View Article and Find Full Text PDF

Atherosclerosis conditions are often assessed in the clinic by measuring blood viscosity, blood flow, and blood lesion levels. In alignment with precision medicine, it is essential to develop convenient and noninvasive approaches for atherosclerosis diagnostics. Herein, an integrated electrochemical sensor was successfully demonstrated for simultaneously detecting cholesterol, transferrin, and K in sweat, all biomarker indicators of atherosclerosis.

View Article and Find Full Text PDF

This study presents a novel approach to the detection of epinephrine, lactate, and cortisol biomarkers in human sweat using molecularly-imprinted polymers (MIP) embedded screen printed carbon electrode (SPCE) sensors. The epinephrine and lactate MIP SPCE sensors were fabricated by epinephrine or lactate-imprinted polyaniline co-polymerized with 3-aminophenylboronic acid and gold nanoparticles (PANI-co-PBA/AuNP) selective membrane on a commercial SPCE. The cortisol sensor was comprised of a cortisol-imprinted poly(glycidyl methacryate-co-ethylene glycol dimethacrylate) (poly (GMA-co-EGDMA)@AuNP selective membrane deposited on a SPCE.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) is a versatile and effective disinfectant against common pathogenic bacteria such as (). Electrochemical HO generation has been studied in the past, but a lack of studies exists on miniaturized electrochemical platforms for the on-demand synthesis of HO for antibacterial applications. In this article, a chemically modified cotton textile platform capable of in situ HO production is demonstrated for deactivation.

View Article and Find Full Text PDF

This article demonstrates an array of inexpensive molecularly imprinted microneedle platforms for the multiplexed electrochemical detection of pH, epinephrine, dopamine, and lactate biomarkers in human sweat. The multiplexed sensors were fabricated via layer-by-layer (LbL) assembly on a polydimethylsiloxane (PDMS) microneedle platform coated with a conductive PDMS/carbon nanotube (CNT)/cellulose nanocrystal (CNC) composite (PDMS/CNT/CNC@PDMS). The pH sensor was comprised of a pH-responsive polyaniline (PANI)/CNT/CNC/silver nanoparticle (AgNP) composite layer.

View Article and Find Full Text PDF

A mechanically robust in-tube stainless steel microneedle solid phase microextraction (SPME) platform for dual electrochemical and chromatographic detection has been demonstrated. The SPME microneedle was fabricated by layer-by-layer (LbL) in-tube coating, consisting of carbon nanotube (CNT)/cellulose nanocrystal (CNC) film layered with an electrically conductive polyaniline (PANI) hydrogel layer (PANI@CNT/CNC SPME microneedle (MN)). The PANI@CNT/CNC SPME MN showed effective analysis of caffeine by GC-MS with an LOD of 26 mg/L and excellent precision across the dynamic range.

View Article and Find Full Text PDF

Human sweat comprises various electrolytes that are health status indicators. Conventional potentiometric electrolyte sensors require an electrical power source, which is expensive, bulky, and requires a complex architecture. Herein, this work demonstrates an electric nanogenerator fabricated using silicon nanowire (SiNW) arrays comprising modified carbon nanoparticles.

View Article and Find Full Text PDF

Recording brain neural signals and optogenetic neuromodulations open frontiers in decoding brain neural information and neurodegenerative disease therapeutics. Conventional implantable probes suffer from modulus mismatch with biological tissues and an irreconcilable tradeoff between transparency and electron conductivity. Herein, a strategy is proposed to address these tradeoffs, which generates conductive and transparent hydrogels with polypyrrole-decorated microgels as cross-linkers.

View Article and Find Full Text PDF

A portable, molecularly imprinted polymer (MIP)-based microneedle (MN) sensor for the electrochemical detection of imidacloprid (IDP) has been demonstrated. The MN sensor was fabricated via layer-by-layer (LbL) in-tube coating using a carbon nanotube (CNT)/cellulose nanocrystal (CNC) composite, and an IDP-imprinted polyaniline layer co-polymerized with imidazole-functionalized CNCs (PANI-co-CNC-Im) as the biomimetic receptor film. The sensor, termed MIP@CNT/CNC MN, was analyzed using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV) and showed excellent electrochemical performance for the detection of IDP.

View Article and Find Full Text PDF

This work presents a multipurpose and multilayered stainless steel microneedle sensor for the in situ redox potential monitoring in food and drink samples, termed MN redox sensor. The MN redox sensor was fabricated by layer-by-layer (LbL) approach. The in-tube multilayer coating comprised carbon nanotubes (CNTs)/cellulose nanocrystals (CNCs) as the first layer, polyaniline (PANI) as the second layer, and the ferrocyanide redox couple as the third layer.

View Article and Find Full Text PDF

A wearable, textile-based molecularly imprinted polymer (MIP) electrochemical sensor for cortisol detection in human sweat has been demonstrated. The wearable cortisol sensor was fabricated via layer-by-layer assembly (LbL) on a flexible cotton textile substrate coated with a conductive nanoporous carbon nanotube/cellulose nanocrystal (CNT/CNC) composite suspension, conductive polyaniline (PANI), and a selective cortisol-imprinted poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) decorated with gold nanoparticles (AuNPs), or plated with gold. The cortisol sensor rapidly (<2 min) responded to 9.

View Article and Find Full Text PDF

Universities, the sites for objective knowledge, apolitical and legitimized to contribute to human and intellectual capacity, find themselves in a tenuous position on issues of merit, equality, and fairness. On one hand, social forces have demonstrated how universities have been institutions for the production and reproduction of systemic inequality. On the other hand, universities maintain that they are well positioned, as part of their institutional renewal practices, to address contemporary calls for Equity, Diversity, and Inclusion (EDI).

View Article and Find Full Text PDF

The future of personalized diagnostics and treatment of cardiovascular diseases lies in the use of portable sensors. Portable sensors can acquire biomarker information in biological fluids such as sweat, an approach that mitigates the shortcomings of conventional hospital-centered healthcare. Low sensitivity, selectivity, and specificity remain bottlenecks for the widespread use of portable sensors.

View Article and Find Full Text PDF

Shape editability combined with a self-healing capability and long-term cycling durability are highly desirable properties for wearable supercapacitors. Most wearable supercapacitors have rigid architecture and lack the capacity for editability into desirable shapes. Through sandwiching hydrogel electrolytes between two electrodes, a suite of wearable supercapacitors that integrate desirable properties namely: repeated shape editability, excellent self-healing capability, and long-term cycling durability is demonstrated.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) has been identified as one of the most potent naturally occurring carcinogens with high toxicity. The maximum permissible levels of total aflatoxin contamination in food products are limited to 10-15 μg kg, as established by the Codex Alimentarius Commission. The widespread occurrence of AFB1 in the food chain identifies them as significant agricultural contaminants of global concern.

View Article and Find Full Text PDF

Concerns for agri-food safety and environmental management require development of simple to use and cost- and time-effective multiplex sensors for point-of-need (PON) chemical analytics by public end-user. Simultaneous detection of nitrates, phosphates, and pH is of importance in soil and water analysis, agriculture, and food quality assessment. This article demonstrates a suite of stainless steel microneedle electrochemical sensors for multiplexed measurement of pH, nitrate, and phosphate using faradaic capacitance derived from cyclic voltammetry as the mode of detection.

View Article and Find Full Text PDF

An electrochemical aptasensor is reported for the sensitive and specific monitoring of 17β-estradiol (E2) based on the modification of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT)-graphene oxide (GO) coupled with Au@Pt nanocrystals (Au@Pt). With excellent conductivity, chemical stability and active sites, the PEDOT-GO nanocomposite film was firstly in situ polymerized on the glassy carbon electrode by cyclic voltammetry. Subsequently, one-step synthesized Au@Pt were decorated on the conductive polymer, providing a platform for immobilizing the aptamer and enhancing the detecting sensitivity.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on using microgels in hydrogel networks to create materials that can record brain neural signals, aiming to solve issues like foreign body response and performance loss in sensors.
  • These new hydrogels have low stiffness, high stretchability, and excellent fatigue resistance, making them more compatible with neural tissue compared to traditional nanoparticle-reinforced hydrogels.
  • The developed hydrogels are effective for wearable and implantable sensors, demonstrating minimal foreign body response and signal loss, and hold promise for long-term use in capturing physiological information from living tissues.
View Article and Find Full Text PDF

Flexible and wearable sensors have attracted much attention for their applications in health monitoring and the human-machine interaction. The most studied wearable sensors have been demonstrated for sensing a limited range of metabolites such as ions, glucose, uric acid, lactate, etc. Both sweat and urine contain numerous other physiologically relevant metabolites indicative of health and wellness.

View Article and Find Full Text PDF

This communication demonstrates an electrochemical DNA aptasensor for the detection of cortisol in human sweat. The aptasensor was fabricated layer-by-layer assembly on stretchable polydimethylsiloxane (PDMS) coated with conductive nanoporous carbon nanotube-cellulose nanocrystals (CNC/CNT) film using a linker to a cortisol specific DNA aptamer. The flexible cortisol aptasensor had a dynamic range of 2.

View Article and Find Full Text PDF

Exploration of new polymerization reactions is very intriguing in fundamental and practical research, which will advance reaction theories and produce various functional materials. Herein, we report a new polymerization method based on the reaction of Cu and arylacetylide, which generates linear polymers with high molecular weight and low polydispersity index of molecular weight. The Cu-arylacetylide polymerization exhibits different characteristics with traditional polymerizations such as mild reaction temperature, air atmosphere reaction, high molecular weight, fast polymerization rate, and imprecise molar ratio between monomers.

View Article and Find Full Text PDF