We investigate the dependence of the displacements of a molecular motor embedded inside a glassy material on its folding characteristic time τ_{f}. We observe two different time regimes. For slow foldings (regime I) the diffusion evolves very slowly with τ_{f}, while for rapid foldings (regime II) the diffusion increases strongly with τ_{f}(D≈τ_{f}^{-2}), suggesting two different physical mechanisms.
View Article and Find Full Text PDFUsing molecular dynamics simulations we investigate the finite-size dependence of the dynamical properties of a diatomic supercooled liquid. The simplicity of the molecule permits us to access the microsecond time scale. We find that the relaxation time decreases simultaneously with the strength of cooperative motions when the size of the system decreases.
View Article and Find Full Text PDF