Neurocognitive impairment is a prevalent and important co-morbidity in virologically suppressed people living with HIV (PLWH), yet the underlying mechanisms remain elusive and treatments lacking. Here, we explored for the first time, use of participant-derived directly induced neurons (iNs) to model neuronal biology and injury in PLWH. iNs retain age- and disease-related features of the donors, providing unique opportunities to reveal novel aspects of neurological disorders.
View Article and Find Full Text PDFAstrogliosis is a process by which astrocytes, when exposed to inflammation, exhibit hypertrophy, motility, and elevated expression of reactivity markers such as Glial Fibrillar Acidic Protein, Vimentin, and Connexin43. Since 1999, our laboratory in Chile has been studying molecular signaling pathways associated with "gliosis" and has reported that reactive astrocytes upregulate Syndecan 4 and αβ Integrin, which are receptors for the neuronal glycoprotein Thy-1. Thy-1 engagement stimulates adhesion and migration of reactive astrocytes and induces neurons to retract neurites, thus hindering neuronal network repair.
View Article and Find Full Text PDFEfferent cholinergic signaling is a critical and targetable source of immunoregulation. The vagus nerve (VN) is the primary source of cholinergic signaling in the body, and partially innervates hepatic functionality through the liver-brain axis. Virus-induced disruption of cholinergic signaling may promote pathogenesis in hepatotropic and neurotropic viruses.
View Article and Find Full Text PDFHIV-associated neurocognitive impairment (HIV-NCI) persists in 15-40% of people with HIV (PWH) despite effective antiretroviral therapy. HIV-NCI significantly impacts quality of life, and there is currently no effective treatment for it. The development of HIV-NCI is complex and is mediated, in part, by the entry of HIV-infected mature monocytes into the central nervous system (CNS).
View Article and Find Full Text PDFCancer cells often display impaired mitochondrial function, reduced oxidative phosphorylation, and augmented aerobic glycolysis (Warburg effect) to fulfill their bioenergetic and biosynthetic needs. Caveolin-1 (CAV1) is a scaffolding protein that promotes cancer cell migration, invasion, and metastasis in a manner dependent on CAV1 phosphorylation on tyrosine-14 (pY14). Here, we show that CAV1 expression increased glycolysis rates, while mitochondrial respiration was reduced by inhibition of the mitochondrial complex IV.
View Article and Find Full Text PDFInflammation contributes to the genesis and progression of chronic diseases, such as cancer and neurodegeneration. Upregulation of integrins in astrocytes during inflammation induces neurite retraction by binding to the neuronal protein Thy-1, also known as CD90. Additionally, Thy-1 alters astrocyte contractility and movement by binding to the mechano-sensors αβ integrin and Syndecan-4.
View Article and Find Full Text PDFThe renin-angiotensin receptor AT2R controls systemic blood pressure and is also suggested to modulate metastasis of cancer cells. However, in the latter case, the mechanisms involved downstream of AT2R remain to be defined. We recently described a novel Caveolin-1(CAV1)/Ras-related protein 5A (Rab5)/Ras-related C3 botulinum toxin substrate 1 (Rac1) signaling axis that promotes metastasis in melanoma, colon, and breast cancer cells.
View Article and Find Full Text PDF