Publications by authors named "Samuel Madamba"

The basolateral nucleus of the amygdala (BLA) is critical to the pathophysiology of anxiety-driven alcohol drinking and relapse. The endogenous cannabinoid/type 1 cannabinoid receptor (eCB/CB ) system curbs BLA-driven anxiety and stress responses via a retrograde negative feedback system that inhibits neurotransmitter release, and BLA CB activation reduces GABA release and drives anxiogenesis. Additionally, decreased amygdala CB is observed in abstinent alcoholic patients and ethanol withdrawn rats.

View Article and Find Full Text PDF

The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1 ) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence.

View Article and Find Full Text PDF

Neuroinflammation is hypothesized to enhance alcohol consumption and contribute to the development of alcoholism. GABAergic transmission in the central amygdala (CeA) plays an important role in the transition to alcohol dependence. Therefore, we studied the effects of interleukin-1β (IL-1β), a proinflammatory cytokine mediating ethanol-induced neuroinflammation, and its interaction with ethanol on CeA GABAegic transmission in B6129SF2/J mice.

View Article and Find Full Text PDF

The central amygdala (CeA) plays an important role in opioid addiction. Therefore, we examined the effects of naloxone-precipitated morphine withdrawal (WD) on GABAergic transmission in rat CeA neurons using whole-cell recordings with naloxone in the bath. The basal frequency of miniature inhibitory postsynaptic currents (mIPSCs) increased in CeA neurons from WD compared to placebo rats.

View Article and Find Full Text PDF

Excessive ethanol drinking in rodent models may involve activation of the innate immune system, especially toll-like receptor 4 (TLR4) signaling pathways. We used intracellular recording of evoked GABAergic inhibitory postsynaptic potentials (eIPSPs) in central amygdala (CeA) neurons to examine the role of TLR4 activation by lipopolysaccharide (LPS) and deletion of its adapter protein CD14 in acute ethanol effects on the GABAergic system. Ethanol (44, 66 or 100mM) and LPS (25 and 50μg/ml) both augmented eIPSPs in CeA of wild type (WT) mice.

View Article and Find Full Text PDF

The neuropeptide galanin and its three receptor subtypes (GalR1-3) are expressed in the central amygdala (CeA), a brain region involved in stress- and anxiety-related behaviors, as well as alcohol dependence. Galanin also has been suggested to play a role in alcohol intake and alcohol dependence. We examined the effects of galanin in CeA slices from wild-type and knockout (KO) mice deficient of GalR2 and both GalR1 and GalR2 receptors.

View Article and Find Full Text PDF

We investigated possible alterations of pharmacologically-isolated, evoked GABA(A) inhibitory postsynaptic potentials (eIPSPs) and miniature GABA(A) inhibitory postsynaptic currents (mIPSCs) in the rat central amygdala (CeA) elicited by acute application of µ-opioid receptor (MOR) agonists (DAMGO and morphine; 1 µM) and by chronic morphine treatment with morphine pellets. The acute activation of MORs decreased the amplitudes of eIPSPs, increased paired-pulse facilitation (PPF) of eIPSPs and decreased the frequency (but not the amplitude) of mIPSCs in a majority of CeA neurons, suggesting that acute MOR-dependent modulation of this GABAergic transmission is mediated predominantly via presynaptic inhibition of GABA release. We observed no significant changes in the membrane properties, eIPSPs, PPF or mIPSCs of CeA neurons during chronic morphine treatment compared to CeA of naïve or sham rats.

View Article and Find Full Text PDF

Background: Corticotropin-releasing factor (CRF) and gamma-aminobutyric acid (GABA)ergic systems in the central amygdala (CeA) are implicated in the high-anxiety, high-drinking profile associated with ethanol dependence. Ethanol augments CeA GABA release in ethanol-naive rats and mice.

Methods: Using naive and ethanol-dependent rats, we compared electrophysiologic effects and interactions of CRF and ethanol on CeA GABAergic transmission, and we measured GABA dialyzate in CeA after injection of CRF(1) antagonists and ethanol.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) is a 41-amino-acid neuropeptide involved in stress responses initiated from several brain areas, including the amygdala formation. Research shows a strong relationship between stress, brain CRF, and excessive alcohol consumption. Behavioral studies suggest that the central amygdala (CeA) is significantly involved in alcohol reward and dependence.

View Article and Find Full Text PDF

Endogenous opioid systems are implicated in the actions of ethanol. For example, mu-opioid receptor (MOR) knockout (KO) mice self-administer less alcohol than the genetically intact counterpart wild-type (WT) mice (Roberts et al., 2000).

View Article and Find Full Text PDF

The neuropeptide galanin and its three receptor subtypes (Gal R1-3) are highly expressed in the dorsal raphe nucleus (DRN), a region of the brain that contains a large population of serotonergic neurons. Galanin is co-expressed with serotonin in approximately 40% of the DRN neurons, and galanin and GALR2 expression are elevated by antidepressants like the SSRI fluoxetine, suggesting an interaction between serotonin and galanin. The present study examines the effect of galanin (Gal 1-29), a pan ligand for GalR (1-3) and the GalR2/GalR3-selective ligand, Gal 2-11, on the electrophysiological properties of DRN serotonergic neurons in a slice preparation.

View Article and Find Full Text PDF

The nucleus accumbens (NAcc) and central amygdala (CeA) are parts of the extended amygdala, a complex that plays a key role in drug abuse and dependence. Our previous studies showed that opiates and ethanol alter glutamatergic transmission in these regions. N-methyl-D-aspartate (NMDA) receptors are key components of glutamatergic transmission likely involved in the development of opiate tolerance and dependence.

View Article and Find Full Text PDF

We recently reported that chronic ethanol treatment (CET) and early withdrawal (2-8 h) altered glutamatergic transmission at both pre- and postsynaptic sites in central nucleus of the amygdala (CeA). Acute ethanol (44 mM) inhibited the NMDA receptor (NMDAR)-mediated EPSCs (NMDA-EPSCs) more in CeA neurons from CET rats than from naïve rats and also decreased paired-pulse facilitation (PPF) of NMDA-EPSCs only in CET rats. To determine whether these CET effects persisted after prolonged withdrawal, we recorded intracellularly in rat CeA slices and measured mRNA and protein expression of CeA NMDAR subunits from CET rats and those withdrawn from ethanol for 1 or 2 weeks.

View Article and Find Full Text PDF

The central nucleus of amygdala (CeA) is important in regulating alcohol consumption and plays a major role in the anxiogenic response to ethanol withdrawal. We showed previously that acute ethanol augments GABA(A) receptor-mediated IPSPs and IPSCs, possibly by a presynaptic mechanism. Here, we have examined the interaction of acute ethanol with the GABAergic system in chronic ethanol-treated (CET) rats using an in vitro CeA slice preparation and in vivo brain microdialysis.

View Article and Find Full Text PDF

gamma-Hydroxybutyrate (GHB) is used for the treatment of alcoholism and to induce absence seizures in animals, but it has also recently emerged as a drug of abuse. In hippocampal neurons, GHB may activate its own putative receptor as well as GABA(B) receptors to affect synaptic transmission. We used voltage-clamp recordings of rat CA1 pyramidal neurons to characterize the postsynaptic conductances affected by GHB and to further clarify the site of GHB action.

View Article and Find Full Text PDF

The central amygdala (CeA) plays a role in the relationship among stress, corticotropin-releasing factor (CRF), and alcohol abuse. In whole-cell recordings, both CRF and ethanol enhanced gamma-aminobutyric acid-mediated (GABAergic) neurotransmission in CeA neurons from wild-type and CRF2 receptor knockout mice, but not CRF1 receptor knockout mice. CRF1 (but not CRF2) receptor antagonists blocked both CRF and ethanol effects in wild-type mice.

View Article and Find Full Text PDF

The modulation of glutamatergic transmission by ethanol may contribute to ethanol intoxication, reinforcement, tolerance, and dependence. Therefore, we used in vitro electrophysiological and in vivo microdialysis techniques to investigate the effects of acute and chronic ethanol on glutamatergic transmission in the central nucleus of amygdala (CeA). Superfusion of 5-66 mM ethanol decreased compound glutamatergic EPSPs and EPSCs in CeA neurons, with half-maximal inhibition elicited by 14 mM ethanol.

View Article and Find Full Text PDF

Both the nucleus accumbens (NAcc) and central amygdala (CeA) are thought to play roles in tolerance to, and dependence on, abused drugs. Although our past studies in rat brain slices suggested a role for NMDA receptors (NMDARs) in NAcc neurons in the effects of acute and chronic opiate treatment, the cellular and molecular mechanisms remained unclear. Therefore, we examined the effects of morphine dependence on electrophysiological properties of NMDARs in freshly isolated NAcc neurons and on expression of mRNA coding for NR2A-C subunits using single-cell RT-PCR.

View Article and Find Full Text PDF

Cortistatin (CST) is a sleep-modulating peptide found exclusively in the brain. Although CST is closely related to somatostatin (SST) and binds to SST receptors, CST has effects on sleep and neuronal activity in cortex and hippocampus that differ from SST. To uncover the cellular mechanisms affected by CST, we studied the electrophysiological postsynaptic effects of CST and assessed its interaction with SST on hippocampal CA1 pyramidal neurons.

View Article and Find Full Text PDF

We examined the interaction of ethanol with the gamma-aminobutyric acid (GABA)ergic system in neurons of slices of the rat central amygdala nucleus (CeA), a brain region thought to be critical for the reinforcing effects of ethanol. Brief superfusion of 11-66 mM ethanol significantly increased GABA type A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) and currents (IPSCs) in most CeA neurons, with a low apparent EC(50) of 20 mM. Acute superfusion of 44 mM ethanol increased the amplitude of evoked GABA(A) IPSPs and IPSCs in 70% of CeA neurons.

View Article and Find Full Text PDF