Publications by authors named "Samuel M Silvestre"

Cancer treatment remains a significant challenge, with chemotherapy still being one of the most common therapeutic approaches. Based on our initial studies of symmetric monomethine cyanine dyes, which showed potential against colorectal cancer, this study explored several asymmetric cyanines, aiming to develop more potent and selective antitumor agents, particularly against colorectal cancer. In pursuit of this goal, we have designed, synthesized, and structurally characterized twelve new cyanine dyes.

View Article and Find Full Text PDF

Arjunolic acid (AA) is a pentacyclic triterpenoid with promising anticancer properties. A series of novel AA derivatives containing a pentameric A-ring with an enal moiety, combined with additional modifications at C-28, were designed and prepared. The biological activity on the viability of human cancer and non-tumor cell lines was evaluated in order to identify the most promising derivatives.

View Article and Find Full Text PDF

Catechol-O-methyltransferase (COMT) is an enzyme responsible for the O-methylation of biologically active catechol-based molecules. It has been associated with several neurological disorders, especially Parkinson's disease (PD), because of its involvement in catecholamine metabolism, and has been considered an important therapeutic target for central nervous system disorders. In this review, we summarize the biophysical, structural, and therapeutical relevance of COMT; the medicinal chemistry behind the development of COMT inhibitors and the application of computer-aided design to support the design of novel molecules; current methodologies for the biosynthesis, isolation, and purification of COMT; and revise existing bioanalytical approaches for the assessment of enzymatic activity in several biological matrices.

View Article and Find Full Text PDF

Squaraine dyes are a family of compounds known for their relevant photophysical and photochemical properties potentially useful as photosensitizing agents. Since pyridines have been introduced into the skeleton of several families of compounds to enhance their pharmacological activity, and this approach had not yet been performed on squaraines, novel dyes derived from benz[e]indole functionalized with picolyl- and dipicolylamine and N-ethyl and -hexyl chains were designed and synthesized. After being fully characterized, their interaction with human albumin was in vitro and in silico evaluated.

View Article and Find Full Text PDF

Natural pentacyclic triterpenoids (PTs) have been often reported to exhibit a wide range of biological activities. Among them, the anticancer and anti-inflammatory activities are the most studied. Over the last two decades, the number of publications reporting the anticancer effects of PTs has risen exponentially, reflecting the increasing interest in these natural products for the development of new antineoplastic drugs.

View Article and Find Full Text PDF

The built-in o- and p-QM (QM = quinone methide) moieties in benzo[cd]azulen-3-ones account for an easy switch between the bridged 10π- and 6π-aromatic systems in organic synthesis. We report conjugate additions, oxidative nucleophilic substitutions of hydrogen, and reversible Michael additions under very mild conditions. In the presence of thiol nucleophiles, the protonated σ-adducts could be isolated and characterized.

View Article and Find Full Text PDF

Dehydroepiandrosterone (DHEA) is a precursor of androgen synthesis whose action is partially exerted through its metabolites. 7-Oxo-dehydroepiandrosterone (7-oxo-DHEA) is a common DHEA metabolite, non-convertible to androgens, which constitutes a promising therapeutic strategy for multiple conditions. Sertoli cells (SCs) are responsible for the support of spermatogenesis, having unique metabolic characteristics strongly modulated by androgens.

View Article and Find Full Text PDF

The role of steroidal inhibitors of androgen biosynthesis as potential weapons in the treatment of prostatic diseases, such as benign prostatic hyperplasia and prostatic cancer will be reviewed. Two enzymes have been targeted in the development of inhibitors that potentially could be useful in the management of such conditions. 5α-Reductase is primarily of interest in benign prostatic disease, though some role in the chemoprevention of prostatic carcinoma have been considered, whereas the 17α-hydroxylase/17,20-lyase (CYP17) enzyme is of interest in the treatment of malignant disease.

View Article and Find Full Text PDF

Steroids, a widespread class of natural organic compounds occurring in animals, plants and fungi, have shown great therapeutic value for a broad array of pathologies. The present overview is focused on the anticancer activity of steroids, which is very representative of a rich structural molecular diversity and ability to interact with various biological targets and pathways. This review encompasses the most relevant discoveries on steroid anticancer drugs and leads through the last decade and comprises 668 references.

View Article and Find Full Text PDF

In recent years, the chemical potential of bismuth and bismuth compounds has been actively exploited. Bismuth salts are known for their low toxicity, making them potential valuable reagents for large-scale synthesis, which becomes more obvious when dealing with products such as active pharmaceutical ingredients or synthetic intermediates. Conversely, bismuth compounds have been widely used in medicine.

View Article and Find Full Text PDF

Steroid and terpene chemistry still have a great impact on medicinal chemistry. Therefore, the development of new reactions or "greener" processes in this field is a contemporaneous issue. In this review, the use of bismuth(III) salts, as "ecofriendly" reagents/catalysts, on new chemical processes involving steroids and terpenes as substrates will be focused.

View Article and Find Full Text PDF