Background: In two pivotal phase 3 trials, up to 24 weeks of treatment with elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) was efficacious and safe in patients with cystic fibrosis (CF) ≥12 years of age who have at least one allele. The aim of this study is to assess long-term safety and efficacy of ELX/TEZ/IVA in these patients.
Methods: In this phase 3, open-label, single-arm extension study, participants with -minimal function (from a 24-week parent study; n=399) or - (from a 4-week parent study; n=107) genotypes receive ELX/TEZ/IVA at the same dose (ELX 200 mg once daily, TEZ 100 mg once daily and IVA 150 mg every 12 h).
The triple-combination regimen elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) was shown to be safe and efficacious in children aged 6 through 11 years with cystic fibrosis and at least one allele in a phase 3, open-label, single-arm study. To further evaluate the efficacy and safety of ELX/TEZ/IVA in children 6 through 11 years of age with cystic fibrosis heterozygous for and a minimal function mutation (/MF genotypes) in a randomized, double-blind, placebo-controlled phase 3b trial. Children were randomized to receive either ELX/TEZ/IVA ( = 60) or placebo ( = 61) during a 24-week treatment period.
View Article and Find Full Text PDFLancet Respir Med
March 2022
Background: Elexacaftor plus tezacaftor plus ivacaftor is a triple-combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator regimen shown to be generally safe and efficacious in people with cystic fibrosis aged 12 years or older with at least one F508del-CFTR allele. We aimed to assess the magnitude and durability of the clinical effects of this triple combination regimen in people with cystic fibrosis homozygous for the F508del-CFTR mutation.
Methods: We conducted a multicentre, randomised, double-blind, active-controlled, phase 3b trial of elexacaftor plus tezacaftor plus ivacaftor at 35 medical centres in Australia, Belgium, Germany, and the UK.
Background: Elexacaftor-tezacaftor-ivacaftor is a small-molecule cystic fibrosis transmembrane conductance regulator (CFTR) modulator regimen shown to be efficacious in patients with at least one allele, which indicates that this combination can modulate a single allele. In patients whose other allele contains a gating or residual function mutation that is already effectively treated with previous CFTR modulators (ivacaftor or tezacaftor-ivacaftor), the potential for additional benefit from restoring Phe508del CFTR protein function is unclear.
Methods: We conducted a phase 3, double-blind, randomized, active-controlled trial involving patients 12 years of age or older with cystic fibrosis and -gating or -residual function genotypes.
Elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) was shown to be efficacious and safe in patients ≥12 years of age with cystic fibrosis and at least one (cystic fibrosis transmembrane conductance regulator) allele, but it has not been evaluated in children <12 years of age. To assess the safety, pharmacokinetics, and efficacy of ELX/TEZ/IVA in children 6 through 11 years of age with -minimal function or - genotypes. In this 24-week open-label phase 3 study, children ( = 66) weighing <30 kg received 50% of the ELX/TEZ/IVA adult daily dose (ELX 100 mg once daily, TEZ 50 mg once daily, and IVA 75 mg every 12 h) whereas children weighing ⩾30 kg received the full adult daily dose (ELX 200 mg once daily, TEZ 100 mg once daily, and IVA 150 mg every 12 h).
View Article and Find Full Text PDFThe original version of this article unfortunately contained a mistake.
View Article and Find Full Text PDFIntroduction: The triple-combination (TC) cystic fibrosis transmembrane conductance regulator (CFTR) modulator regimen elexacaftor, tezacaftor, and ivacaftor was shown to be safe and efficacious in phase 3 trials of people with cystic fibrosis (pwCF) ≥ 12 years of age with ≥ 1 F508del-CFTR allele. Here, a simulation study predicted ivacaftor, tezacaftor, and elexacaftor exposures and impacts on CFTR modulation following transition from ivacaftor [a cytochrome P450 3A (CYP3A) substrate], lumacaftor (a CYP3A inducer)/ivacaftor, or tezacaftor/ivacaftor to TC.
Methods: Physiologically based pharmacokinetic (PBPK) modeling was used to evaluate plasma exposures during transition from mono- or dual-combination CFTR modulator regimens to TC.
Background: Chronic infection and concomitant airway inflammation is the leading cause of morbidity and mortality for people living with cystic fibrosis (CF). Although chronic infection in CF is undeniably polymicrobial, involving a lung microbiota, infection surveillance and control approaches remain underpinned by classical aerobic culture-based microbiology. How to use microbiomics to direct clinical management of CF airway infections remains a crucial challenge.
View Article and Find Full Text PDFBackground: Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, and nearly 90% of patients have at least one copy of the Phe508del mutation. In a phase 2 trial involving patients who were heterozygous for the Phe508del mutation and a minimal-function mutation (Phe508del-minimal function genotype), the next-generation CFTR corrector elexacaftor, in combination with tezacaftor and ivacaftor, improved Phe508del CFTR function and clinical outcomes.
Methods: We conducted a phase 3, randomized, double-blind, placebo-controlled trial to confirm the efficacy and safety of elexacaftor-tezacaftor-ivacaftor in patients 12 years of age or older with cystic fibrosis with Phe508del-minimal function genotypes.
Lancet
November 2019
Background: Cystic fibrosis transmembrane conductance regulator (CFTR) modulators correct the basic defect caused by CFTR mutations. Improvements in health outcomes have been achieved with the combination of a CFTR corrector and potentiator in people with cystic fibrosis homozygous for the F508del mutation. The addition of elexacaftor (VX-445), a next-generation CFTR corrector, to tezacaftor plus ivacaftor further improved F508del-CFTR function and clinical outcomes in a phase 2 study in people with cystic fibrosis homozygous for the F508del mutation.
View Article and Find Full Text PDFCystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator gene () that result in diminished quantity and/or function of the CFTR anion channel. , the most common CF-causing mutation (found in ∼90% of patients), causes severe processing and trafficking defects, resulting in decreased CFTR quantity and function. CFTR modulators are medications that increase the amount of mature CFTR protein (correctors) or enhance channel function (potentiators) at the cell surface.
View Article and Find Full Text PDFBackground: Despite the significant impact of chronic symptoms on quality of life with cystic fibrosis (CF), the role of palliative care in management of this disease is not well defined. The coping, goal assessment, and relief from evolving CF symptoms (CF-CARES) model is a primary palliative care intervention designed to provide chronic symptom management at all stages of the disease. The goal of this pilot study was to estimate the effectiveness of the CF-CARES intervention on improving chronic symptoms and quality of life for people living with CF.
View Article and Find Full Text PDFPolymyxins are a last-line therapy against multidrug-resistant Pseudomonas aeruginosa; however, resistance to polymyxins has been increasingly reported. Therefore, understanding the mechanisms of polymyxin activity and resistance is crucial for preserving their clinical usefulness. This study employed comparative metabolomics and transcriptomics to investigate the responses of polymyxin-susceptible P.
View Article and Find Full Text PDFBackground: Advance care planning (ACP) is recommended for people with cystic fibrosis (CF), yet guidance for optimal implementation is lacking.
Objective: To assess ACP-related thoughts, comfort level, and preferences among people with CF to guide evidence-based routine implementation of ACP in the CF clinic.
Design: A cross-sectional survey assessed ACP-related experiences and preferences.
Background: The next-generation cystic fibrosis transmembrane conductance regulator (CFTR) corrector VX-659, in triple combination with tezacaftor and ivacaftor (VX-659-tezacaftor-ivacaftor), was developed to restore the function of Phe508del CFTR protein in patients with cystic fibrosis.
Methods: We evaluated the effects of VX-659-tezacaftor-ivacaftor on the processing, trafficking, and function of Phe508del CFTR protein using human bronchial epithelial cells. A range of oral VX-659-tezacaftor-ivacaftor doses in triple combination were then evaluated in randomized, controlled, double-blind, multicenter trials involving patients with cystic fibrosis who were heterozygous for the Phe508del CFTR mutation and a minimal-function CFTR mutation (Phe508del-MF genotypes) or homozygous for the Phe508del CFTR mutation (Phe508del-Phe508del genotype).
Background: VX-445 is a next-generation cystic fibrosis transmembrane conductance regulator (CFTR) corrector designed to restore Phe508del CFTR protein function in patients with cystic fibrosis when administered with tezacaftor and ivacaftor (VX-445-tezacaftor-ivacaftor).
Methods: We evaluated the effects of VX-445-tezacaftor-ivacaftor on Phe508del CFTR protein processing, trafficking, and chloride transport in human bronchial epithelial cells. On the basis of in vitro activity, a randomized, placebo-controlled, double-blind, dose-ranging, phase 2 trial was conducted to evaluate oral VX-445-tezacaftor-ivacaftor in patients heterozygous for the Phe508del CFTR mutation and a minimal-function mutation (Phe508del-MF) and in patients homozygous for the Phe508del CFTR mutation (Phe508del-Phe508del) after tezacaftor-ivacaftor run-in.
Antimicrob Agents Chemother
June 2018
Multidrug-resistant presents a global medical challenge, and polymyxins are a key last-resort therapeutic option. Unfortunately, polymyxin resistance in has been increasingly reported. The present study was designed to define metabolic differences between paired polymyxin-susceptible and -resistant strains using untargeted metabolomics and lipidomics analyses.
View Article and Find Full Text PDFPolymyxins are last-line antibiotics against life-threatening multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance is increasingly reported, leaving a total lack of therapies. Using lipidomics and transcriptomics, we discovered that polymyxin B induced lipid A deacylation via pagL in both polymyxin-resistant and -susceptible Pseudomonas aeruginosa.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2017
Bacterial persisters are a quasidormant subpopulation of cells that are tolerant to antibiotic treatment. The combination of the aminoglycoside tobramycin with fumarate as an antibacterial potentiator utilizes an antipersister strategy that is aimed at reducing recurrent infections by enhancing the killing of persisters. Stationary-phase cultures of were used to generate persister cells.
View Article and Find Full Text PDFOctapeptins are cyclic lipopeptides with a broader spectrum of activity against fungi and polymyxin-resistant Gram-negative and Gram-positive bacteria. In the present study, we investigated the interaction of octapeptin A3 with asymmetric outer membrane models of Gram-negative pathogen Pseudomonas aeruginosa using neutron reflectometry, together with fluorimetric and calorimetry methods. For the first time, our neutron reflectometry results reveal that the interaction of octapeptin A3 with the Gram-negative outer membrane involves an initial transient polar interaction with the phospholipid and lipid A headgroups, followed by the penetration of the entire octapeptin molecule into the fatty acyl core of the outer membrane.
View Article and Find Full Text PDFBackground: Current palliative care tools do not address distressing chronic symptoms that are most relevant to cystic fibrosis.
Methods: A CF-specific structured assessment based on a primary palliative care framework was administered to 41 adolescents and adults with CF. Descriptive and correlational analyses were conducted.
Metabolically dormant bacteria present a critical challenge to effective antimicrobial therapy because these bacteria are genetically susceptible to antibiotic treatment but phenotypically tolerant. Such tolerance has been attributed to impaired drug uptake, which can be reversed by metabolic stimulation. Here, we evaluate the effects of central carbon metabolite stimulations on aminoglycoside sensitivity in the pathogen Pseudomonas aeruginosa.
View Article and Find Full Text PDFWe recently reported a 2-aminoimidazole-based antibiotic adjuvant that reverses colistin resistance in two species of Gram-negative bacteria. Mechanistic studies in demonstrated that this compound downregulated the PmrAB two-component system and abolished a lipid A modification that is required for colistin resistance. We now report the synthesis and evaluation of two separate libraries of substituted 2-aminoimidazole analogues based on this parent compound.
View Article and Find Full Text PDFPurpose: Traditional polymeric nanoparticle formulations for prolonged local action during inhalation therapy are highly susceptible to muco-ciliary clearance. In addition, polymeric carriers are typically administered in high doses due to finite drug loading. For toxicological reasons, these carriers and their degradation byproducts are undesirable for inhalation therapy, particularly for chronic use, due to potential lung accumulation.
View Article and Find Full Text PDF