Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired and lung function declines.
View Article and Find Full Text PDFInvestigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired due to loss of alveolar structures and lung function declines.
View Article and Find Full Text PDFis a Gram-negative bacterium associated with localized aggressive periodontitis as well as some systemic diseases. The strains of most closely associated with disease produce more of a secreted leukotoxin (LtxA) than isolates from healthy carriers, suggesting a key role for this toxin in disease progression. LtxA is released into the bacterial cytosol in a free form as well as in association with the surface of outer membrane vesicles (OMVs).
View Article and Find Full Text PDF