Conditional gene deletion using dimerizable Cre recombinase (DiCre) is so far the best developed system for the phenotypic analysis of essential genes in Leishmania species. Here, we describe a protocol for the generation of a conditional gene deletion mutant and the subsequent inducible deletion of a target gene. Leishmania parasites are genetically modified to express two inactive Cre subunits (DiCre) and a single LoxP-flanked version of a target gene in a context where both endogenous copies of the gene have been deleted.
View Article and Find Full Text PDFLeishmania species are protozoan parasites whose remarkably plastic genome limits the establishment of effective genetic manipulation and leishmaniasis treatment. The strategies used by Leishmania to maintain its genome while allowing variability are not fully understood. Here, we used DiCre-mediated conditional gene deletion to show that HUS1, a component of the 9-1-1 (RAD9-RAD1-HUS1) complex, is essential and is required for a G2/M checkpoint.
View Article and Find Full Text PDFMol Biochem Parasitol
September 2017
Here we present the establishment of an inducible system based on the dimerizable Cre recombinase (DiCre) for controlled gene expression in the protozoan parasite Leishmania. Rapamycin-induced DiCre activation promoted efficient flipping and expression of gene products in a time and dose-dependent manner. The DiCre flipping activity induced the expression of target genes from both integrated and episomal contexts broadening the applicability of the system.
View Article and Find Full Text PDFMol Biochem Parasitol
September 2017
Leishmania mexicana has a large family of cyclin-dependent kinases (CDKs) that reflect the complex interplay between cell cycle and life cycle progression. Evidence from previous studies indicated that Cdc2-related kinase 3 (CRK3) in complex with the cyclin CYC6 is a functional homologue of the major cell cycle regulator CDK1, yet definitive genetic evidence for an essential role in parasite proliferation is lacking. To address this, we have implemented an inducible gene deletion system based on a dimerised Cre recombinase (diCre) to target CRK3 and elucidate its role in the cell cycle of L.
View Article and Find Full Text PDF