Asparagine deamidation is a post-translational modification (PTM) that converts asparagine residues into iso-aspartate and/or aspartate. Non-enzymatic asparagine deamidation is observed frequently during the manufacturing, processing, and/or storage of biotherapeutic proteins. Depending on the site of deamidation, this PTM can significantly impact the therapeutic's potency, stability, and/or immunogenicity.
View Article and Find Full Text PDFFragmentation is a well-characterized degradation pathway of therapeutic antibodies and is usually monitored by capillary electrophoresis-sodium dodecyl sulfate (CE-SDS). Although fragments due to cleavage in C2 domains linked by intrachain disulfide bonds are common and can be detected by reduced reversed-phase - liquid chromatography mass spectrometry (RP-LCMS) and reduced CE-SDS methods, their separation in nonreduced CE-SDS (nrCE-SDS) has not been reported but speculated as comigrating with intact IgG. A shoulder peak in nrCE-SDS was observed in the stability samples of an IgG-like bispecific antibody and was determined to be mainly caused by fragments from clipping at the C-terminus of leucine (L)306 or L309 (EU numbering) in the C2 domain of both heavy chains (HCs) and, to a lesser degree, at the C-terminus of L182 in the C1 domain of the knob HC.
View Article and Find Full Text PDFSite-specific antibody-drug conjugates (ADCs) are designed to overcome the heterogeneity observed with first-generation ADCs that use random conjugation to surface-exposed lysine residues or conjugation to interchain disulfide bonds. Despite significantly enhanced homogeneity, however, the production of site-specific ADCs yields some process-related species heterogeneity, including stereoisomers, unconjugated antibody, underconjugated species, and overconjugated species. An elevated level of size variants, such as heavy chain-light chain species (half ADC), heavy chain-heavy chain-light chain species, and light chain species, is also observed with the final site-specific ADC product.
View Article and Find Full Text PDFThe presence of protein aggregates is commonly believed to be an important risk factor for immunogenicity of therapeutic proteins. Among all types of aggregates, dimers are relatively abundant in most commercialized monoclonal antibody (mAb) products. The aim of this study was to investigate the immunogenicity of artificially created mAb dimers relative to that of unstressed and stressed mAb monomers.
View Article and Find Full Text PDFProtein aggregates are one of the several risk factors for undesired immunogenicity of biopharmaceuticals. However, it remains unclear which features determine whether aggregates will trigger an unwanted immune response. The aim of this study was to determine the effect of aggregates' size on their relative immunogenicity.
View Article and Find Full Text PDFAntigenic drift of the influenza A virus requires that vaccine production is targeted to the strains circulating each year. Live-attenuated influenza A vaccine manufacturing is used to produce intact virions with the surface antigens of the circulating strains. Influenza A typically contains a large percentage (>90%) of non-infective virions.
View Article and Find Full Text PDF